3,460 research outputs found

    Security Devices

    Get PDF

    Hypoxic repeat sprint training improves rugby player's repeated sprint but not endurance performance

    Get PDF
    This study aims to investigate the performance changes in 19 well-trained male rugby players after repeat-sprint training (six sessions of four sets of 5 × 5 s sprints with 25 s and 5 min of active recovery between reps and sets, respectively) in either normobaric hypoxia (HYP; n = 9; F₁O₂ = 14.5%) or normobaric normoxia (NORM; n = 10; F₁O₂ = 20.9%). Three weeks after the intervention, 2 additional repeat-sprint training sessions in hypoxia (F₁O₂ = 14.5%) was investigated in both groups to gauge the efficacy of using "top-up" sessions for previously hypoxic-trained subjects and whether a small hypoxic dose would be beneficial for the previously normoxic-trained group. Repeated sprint (8 × 20 m) and Yo-Yo Intermittent Recovery Level 1 (YYIR1) performances were tested twice at baseline (Pre 1 and Pre 2) and weekly after (Post 1-3) the initial intervention (intervention 1) and again weekly after the second "top-up" intervention (Post 4-5). After each training set, heart rate, oxygen saturation, and rate of perceived exertion were recorded. Compared to baseline (mean of Pre 1 and Pre 2), both the hypoxic and normoxic groups similarly lowered fatigue over the 8 sprints 1 week after the intervention (Post 1: -1.8 ± 1.6%, -1.5 ± 1.4%, mean change ± 90% CI in HYP and NORM groups, respectively). However, from Post 2 onwards, only the hypoxic group maintained the performance improvement compared to baseline (Post 2: -2.1 ± 1.8%, Post 3: -2.3 ± 1.7%, Post 4: -1.9 ± 1.8%, and Post 5: -1.2 ± 1.7%). Compared to the normoxic group, the hypoxic group was likely to have substantially less fatigue at Post 3-5 (-2.0 ± 2.4%, -2.2 ± 2.4%, -1.6 ± 2.4% Post 3, Post 4, Post 5, respectively). YYIR1 performances improved throughout the recovery period in both groups (13-37% compared to baseline) with unclear differences found between groups. The addition of two sessions of "top-up" training after intervention 1, had little effect on either group. Repeat-sprint training in hypoxia for six sessions increases repeat sprint ability but not YYIR1 performance in well-trained rugby players

    Lunar hand tools

    Get PDF
    Tools useful for operations and maintenance tasks on the lunar surface were determined and designed. Primary constraints are the lunar environment, the astronaut's space suit and the strength limits of the astronaut on the moon. A multipurpose rotary motion tool and a collapsible tool carrier were designed. For the rotary tool, a brushless motor and controls were specified, a material for the housing was chosen, bearings and lubrication were recommended and a planetary reduction gear attachment was designed. The tool carrier was designed primarily for ease of access to the tools and fasteners. A material was selected and structural analysis was performed on the carrier. Recommendations were made about the limitations of human performance and about possible attachments to the torque driver

    Live long and prosper : durable benefits of early-life care in banded mongooses

    Get PDF
    Kin selection theory defines the conditions for which altruism or 'helping' can be favoured by natural selection. Tests of this theory in cooperatively breeding animals have focused on the short-term benefits to the recipients of help, such as improved growth or survival to adulthood. However, research on early-life effects suggests that there may be more durable, lifelong fitness impacts to the recipients of help, which in theory should strengthen selection for helping. Here, we show in cooperatively breeding banded mongooses (Mungos mungo) that care received in the first 3 months of life has lifelong fitness benefits for both male and female recipients. In this species, adult helpers called 'escorts' form exclusive one-to-one caring relationships with specific pups (not their own offspring), allowing us to isolate the effects of being escorted on later reproduction and survival. Pups that were more closely escorted were heavier at sexual maturity, which was associated with higher lifetime reproductive success for both sexes. Moreover, for female offspring, lifetime reproductive success increased with the level of escorting received per se, over and above any effect on body mass. Our results suggest that early-life social care has durable benefits to offspring of both sexes in this species. Given the well-established developmental effects of early-life care in laboratory animals and humans, we suggest that similar effects are likely to be widespread in social animals more generally. We discuss some of the implications of durable fitness benefits for the evolution of intergenerational helping in cooperative animal societies, including humans. This article is part of the theme issue 'Developing differences: early-life effects and evolutionary medicine'.Peer reviewe

    Causes and consequences of intergroup conflict in cooperative banded mongooses

    Get PDF
    This is the final version of the article. Available from Elsevier Masson via the DOI in this record.Conflict between groups is a notable feature of many animal societies. Recent theoretical models suggest that violent intergroup conflict can shape patterns of within-group cooperation. However, despite its prevalence in social species, the adaptive significance of violent intergroup conflict has been little explored outside of humans and chimpanzees, Pan troglodytes. A barrier to current understanding of the role of intergroup conflict in the evolution of social behaviour is a lack of information on the causes and consequences of aggression between groups. Here, we examined the causes and fitness consequences of intergroup conflict in the banded mongoose, Mungos mungo, using a 16-year data set of observed intergroup interactions, life history and behaviour. Banded mongooses are cooperative breeders that live in highly territorial groups and engage in frequent, aggressive and violent intergroup interactions. We found that intensified population-wide competition for food and mates increased the probability of intergroup interactions, and that increased intergroup conflict was associated with periods in which groups were growing in size. Intergroup conflict had fitness costs in terms of reduced litter and adult survival but no cost to pregnant females: in fact, females were less likely to abort following an intergroup interaction than when there had been no recent intergroup conflict. Our results suggest that intergroup conflict has measurable costs to both individuals and groups in the long and short term, and that levels of conflict among groups could be high enough to affect patterns of within-group cooperative behaviour. Establishing the consequences of intergroup conflict in cooperative species can shed light on patterns of conflict and cooperation within groups and, in turn, facilitate our understanding of social evolution.Funding was provided by a Natural Environment Research Council grant no. NE/J010278/1 to M.A.C. and a European Research Council grant no. 309249 to M.A.C

    NASA advanced aeronautics design solar powered remotely piloted vehicle

    Get PDF
    Environmental problems such as the depletion of the ozone layer and air pollution demand a change in traditional means of propulsion that is sensitive to the ecology. Solar powered propulsion is a favorable alternative that is both ecologically harmless as well as cost effective. Integration of solar energy into designs ranging from futuristic vehicles to heating is beneficial to society. The design and construction of a Multi-Purpose Remotely Piloted Vehicle (MPRPV) seeks to verify the feasibility of utilizing solar propulsion as a primary fuel source. This task has been a year long effort by a group of ten students, divided into five teams, each dealing with different aspects of the design. The aircraft was designed to take-off, climb to the design altitude, fly in a sustained figure-eight flight path, and cruise for approximately one hour. This mission requires flight at Reynolds numbers between 150,000 and 200,000 and demands special considerations in the aerodynamic design in order to achieve flight in this regime. Optimal performance requires a light weight configuration with both structural integrity and maximum power availability. The structure design and choice of solar cells for the propulsion was governed by the weight, efficiency, and cost considerations. The final design is a MPRPV weighting 35 N which cruises 7 m/s at the design altitude of 50 m. The configuration includes a wing composed of balsa and foam NACA 6409 airfoil sections and carbon fiber spars, a tail of similar construction, and a truss structure fuselage. The propulsion system consists of 98 10 percent efficient solar cells donated by Mobil Solar, a NiCad battery for energy storage, and a folding propeller regulated by a lightweight and efficient control system. The airfoils and propeller chosen for the design were research and tested during the design process
    • 

    corecore