105 research outputs found

    Sequencing the USDA core soybean collection reveals gene loss during domestication and breeding

    Get PDF
    The gene content of plants varies between individuals of the same species due to gene presence/absence variation, and selection can alter the frequency of specific genes in a population. Selection during domestication and breeding will modify the genomic landscape, though the nature of these modifications is only understood for specific genes or on a more general level (e.g., by a loss of genetic diversity). Here we have assembled and analyzed a soybean (Glycine spp.) pangenome representing more than 1,000 soybean accessions derived from the USDA Soybean Germplasm Collection, including both wild and cultivated lineages, to assess genomewide changes in gene and allele frequency during domestication and breeding. We identified 3,765 genes that are absent from the Lee reference genome assembly and assessed the presence/absence of all genes across this population. In addition to a loss of genetic diversity, we found a significant reduction in the average number of protein-coding genes per individual during domestication and subsequent breeding, though with some genes and allelic variants increasing in frequency associated with selection for agronomic traits. This analysis provides a genomic perspective of domestication and breeding in this important oilseed crop

    Measuring fundamental jet properties with multiwavelength fast timing of the black hole X-ray binary MAXI J1820+070

    Get PDF
    We present multiwavelength fast timing observations of the black hole X-ray binary MAXI J1820+070 (ASASSN-18ey), taken with the Karl G. Jansky Very Large Array (VLA), Atacama Large Millimeter/Sub-Millimeter Array (ALMA), Very Large Telescope (VLT), New Technology Telescope (NTT), Neutron Star Interior Composition Explorer (NICER), and XMM–Newton. Our data set simultaneously samples 10 different electromagnetic bands (radio – X-ray) over a 7-h period during the hard state of the 2018–2019 outburst. The emission we observe is highly variable, displaying multiple rapid flaring episodes. To characterize the variability properties in our data, we implemented a combination of cross-correlation and Fourier analyses. We find that the emission is highly correlated between different bands, measuring time-lags ranging from hundreds of milliseconds between the X-ray/optical bands to minutes between the radio/sub-mm bands. Our Fourier analysis also revealed, for the first time in a black hole X-ray binary, an evolving power spectral shape with electromagnetic frequency. Through modelling these variability properties, we find that MAXI J1820+070 launches a highly relativistic (Γ=6.811.15+1.06\Gamma =6.81^{+1.06}_{-1.15}) and confined (ϕ=0.450.11+0.13\phi =0.45^{+0.13}_{-0.11} deg) jet, which is carrying a significant amount of power away from the system (equivalent to 0.6L1100keV\sim 0.6 \, L_{1-100{\rm keV}}). We additionally place constraints on the jet composition and magnetic field strength in the innermost jet base region. Overall, this work demonstrates that time-domain analysis is a powerful diagnostic tool for probing jet physics, where we can accurately measure jet properties with time-domain measurements alone

    Lifetime Differences, direct CP Violation and Partial Widths in D0 Meson Decays to K+K- and pi+pi-

    Full text link
    We describe several measurements using the decays D0->K+K- and pi+pi-. We find the ratio of partial widths, Gamma(D0->K+K-)/Gamma(D0->pi+pi-), to be 2.96+/-0.16+/-0.15, where the first error is statistical and the second is systematic. We observe no evidence for direct CP violation, obtaining A_CP(KK) = (0.0+/-2.2+/-0.8)% and A_CP(pipi = (1.9+/-3.2+/-0.8)%. In the limit of no CP violation we measure the mixing parameter y_CP = -0.012+/-0.025+/-0.014 by measuring the lifetime difference between D0->K+ K- or pi+pi- and the CP neutral state, D0->K-pi+. We see no evidence for mixing.Comment: 14 pages postscript, also available through http://w4.lns.cornell.edu/public/CLNS, submitted to PRD, Rapid Communicatio

    Multiwavelength studies of MHD waves in the solar chromosphere: An overview of recent results

    Get PDF
    The chromosphere is a thin layer of the solar atmosphere that bridges the relatively cool photosphere and the intensely heated transition region and corona. Compressible and incompressible waves propagating through the chromosphere can supply significant amounts of energy to the interface region and corona. In recent years an abundance of high-resolution observations from state-of-the-art facilities have provided new and exciting ways of disentangling the characteristics of oscillatory phenomena propagating through the dynamic chromosphere. Coupled with rapid advancements in magnetohydrodynamic wave theory, we are now in an ideal position to thoroughly investigate the role waves play in supplying energy to sustain chromospheric and coronal heating. Here, we review the recent progress made in characterising, categorising and interpreting oscillations manifesting in the solar chromosphere, with an impetus placed on their intrinsic energetics.Comment: 48 pages, 25 figures, accepted into Space Science Review

    Influence of birth cohort on age of onset cluster analysis in bipolar I disorder

    Get PDF
    PURPOSE: Two common approaches to identify subgroups of patients with bipolar disorder are clustering methodology (mixture analysis) based on the age of onset, and a birth cohort analysis. This study investigates if a birth cohort effect will influence the results of clustering on the age of onset, using a large, international database. METHODS: The database includes 4037 patients with a diagnosis of bipolar I disorder, previously collected at 36 collection sites in 23 countries. Generalized estimating equations (GEE) were used to adjust the data for country median age, and in some models, birth cohort. Model-based clustering (mixture analysis) was then performed on the age of onset data using the residuals. Clinical variables in subgroups were compared. RESULTS: There was a strong birth cohort effect. Without adjusting for the birth cohort, three subgroups were found by clustering. After adjusting for the birth cohort or when considering only those born after 1959, two subgroups were found. With results of either two or three subgroups, the youngest subgroup was more likely to have a family history of mood disorders and a first episode with depressed polarity. However, without adjusting for birth cohort (three subgroups), family history and polarity of the first episode could not be distinguished between the middle and oldest subgroups. CONCLUSION: These results using international data confirm prior findings using single country data, that there are subgroups of bipolar I disorder based on the age of onset, and that there is a birth cohort effect. Including the birth cohort adjustment altered the number and characteristics of subgroups detected when clustering by age of onset. Further investigation is needed to determine if combining both approaches will identify subgroups that are more useful for research

    Distinct clinical symptom patterns in patients hospitalised with COVID-19 in an analysis of 59,011 patients in the ISARIC-4C study

    Get PDF
    COVID-19 is clinically characterised by fever, cough, and dyspnoea. Symptoms affecting other organ systems have been reported. However, it is the clinical associations of different patterns of symptoms which influence diagnostic and therapeutic decision-making. In this study, we applied clustering techniques to a large prospective cohort of hospitalised patients with COVID-19 to identify clinically meaningful sub-phenotypes. We obtained structured clinical data on 59,011 patients in the UK (the ISARIC Coronavirus Clinical Characterisation Consortium, 4C) and used a principled, unsupervised clustering approach to partition the first 25,477 cases according to symptoms reported at recruitment. We validated our findings in a second group of 33,534 cases recruited to ISARIC-4C, and in 4,445 cases recruited to a separate study of community cases. Unsupervised clustering identified distinct sub-phenotypes. First, a core symptom set of fever, cough, and dyspnoea, which co-occurred with additional symptoms in three further patterns: fatigue and confusion, diarrhoea and vomiting, or productive cough. Presentations with a single reported symptom of dyspnoea or confusion were also identified, alongside a sub-phenotype of patients reporting few or no symptoms. Patients presenting with gastrointestinal symptoms were more commonly female, had a longer duration of symptoms before presentation, and had lower 30-day mortality. Patients presenting with confusion, with or without core symptoms, were older and had a higher unadjusted mortality. Symptom sub-phenotypes were highly consistent in replication analysis within the ISARIC-4C study. Similar patterns were externally verified in patients from a study of self-reported symptoms of mild disease. The large scale of the ISARIC-4C study enabled robust, granular discovery and replication. Clinical interpretation is necessary to determine which of these observations have practical utility. We propose that four sub-phenotypes are usefully distinct from the core symptom group: gastro-intestinal disease, productive cough, confusion, and pauci-symptomatic presentations. Importantly, each is associated with an in-hospital mortality which differs from that of patients with core symptoms

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2,3,4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease
    corecore