1,419 research outputs found

    Ultrasound modulates ion channel currents

    Get PDF
    Transcranial focused ultrasound (US) has been demonstrated to stimulate neurons in animals and humans, but the mechanism of this effect is unknown. It has been hypothesized that US, a mechanical stimulus, may mediate cellular discharge by activating mechanosensitive ion channels embedded within cellular membranes. To test this hypothesis, we expressed potassium and sodium mechanosensitive ion channels (channels of the two-pore-domain potassium family (K2P) including TREK-1, TREK-2, TRAAK; Na(V)1.5) in the Xenopus oocyte system. Focused US (10 MHz, 0.3–4.9 W/cm(2)) modulated the currents flowing through the ion channels on average by up to 23%, depending on channel and stimulus intensity. The effects were reversible upon repeated stimulation and were abolished when a channel blocker (ranolazine to block Na(V)1.5, BaCl(2) to block K2P channels) was applied to the solution. These data reveal at the single cell level that focused US modulates the activity of specific ion channels to mediate transmembrane currents. These findings open doors to investigations of the effects of  US on ion channels expressed in neurons, retinal cells, or cardiac cells, which may lead to important medical applications. The findings may also pave the way to the development of sonogenetics: a non-invasive, US-based analogue of optogenetics

    Global water cycle amplifying at less than the Clausius-Clapeyron rate

    Get PDF
    A change in the cycle of water from dry to wet regions of the globe would have far reaching impact on humanity. As air warms, its capacity to hold water increases at the Clausius-Clapeyron rate (CC, approximately 7% °C−1). Surface ocean salinity observations have suggested the water cycle has amplified at close to CC following recent global warming, a result that was found to be at odds with state-of the art climate models. Here we employ a method based on water mass transformation theory for inferring changes in the water cycle from changes in three-dimensional salinity. Using full depth salinity observations we infer a water cycle amplification of 3.0 ± 1.6% °C−1 over 1950–2010. Climate models agree with observations in terms of a water cycle amplification (4.3 ± 2.0% °C−1) substantially less than CC adding confidence to projections of total water cycle change under greenhouse gas emission scenarios

    Maintenance and broadening of the ocean’s salinity distribution by the water cycle

    Get PDF
    The global water cycle leaves an imprint on ocean salinity through evaporation and precipitation. It has been proposed that observed changes in salinity can be used to infer changes in the water cycle. Here salinity is characterized by the distribution of water masses in salinity coordinates. Only mixing and sources and sinks of freshwater and salt can modify this distribution. Mixing acts to collapse the distribution, making saline waters fresher and fresh waters more saline. Hence, in steady state, there must be net precipitation over fresh waters and net evaporation over saline waters. A simple model is developed to describe the relationship between the breadth of the distribution, the water cycle, and mixing—the latter being characterized by an e-folding time scale. In both observations and a state-of-the-art ocean model, the water cycle maintains a salinity distribution in steady state with a mixing time scale of the order of 50 yr. The same simple model predicts the response of the salinity distribution to a change in the water cycle. This study suggests that observations of changes in ocean salinity could be used to infer changes in the hydrological cycle

    Non-suicidal self-injury in adolescence: a longitudinal study of the relationship between NSSI, psychological distress and perceived parenting

    Get PDF
    Objective: The present study investigates whether either adolescents' psychological distress and/or perceived parenting predicted the occurrence of NSSI. Furthermore, the consequences of NSSI are examined in a three-wave longitudinal study. Design: The sample at time 1 (age 12) consisted of 1396 adolescent reports and 1438 parent reports. At time 2 (age 13), 827 adolescent reports and 936 parent reports were obtained. Time 3 (age 14) included 754 adolescent reports and 790 parent reports. Psychological distress of adolescents was measured using the Strengths and Difficulties Questionnaire. Perceived parenting behaviors were examined by the Parental Behavior Scale and the Psychological Control Scale. Results: A total of 10% of the adolescents engaged in NSSI at least once before age 15. Higher psychological distress of adolescents at time 1 was associated with the presence of NSSI at time 2 or 3. The association between psychological distress at time 1 and perception of decreased parental rule setting at time 3 was mediated by the presence of NSSI at time 2. Conclusions: The present study showed that psychological distress at age 12 predicts NSSI over time and that parental awareness of NSSI changes the perception of parenting behaviors. (C) 2014 The Foundation for Professionals in Services for Adolescents. Published by Elsevier Ltd. All rights reserved

    An Uncertainty Quantification Of The Variation Of Internal Heat Transfer Coefficients And The Effect On Airfoil Life

    Get PDF
    Uncertainty in accurately knowing applied internal heat transfer coefficients inside of a cooling passage can lead to variability in predicting low cycle fatigue life of a turbine vane or blade. Under-predicting a life value for a turbine part can have disastrous effects on the engine as a whole, and can negate efforts in innovative design for advanced cooling techniques for turbine components. Quantification of this fatigue life uncertainty utilizing a computational framework is the primary objective of this thesis. Through the use of probabilistic design methodologies a process is developed to simulate uncertainties of internal heat transfer coefficient, which are then applied to the aft section of a non-rotating turbine blade component, internally cooled through a multi-pass serpentine channel. While keeping all other parameters constant internal heat transfer coefficients are varied according to a prescribed uncertainty range throughout the passages. The effect on the low cycle fatigue life of the airfoil is then evaluated at three discrete locations: near the base of the airfoil, towards the tip, and at mid-span. A generic low cycle fatigue life prediction model is used for these evaluations. Even though the probabilistic design process uses independent random numbers to simulate the variation, in reality, heat transfer coefficients at points located closely together should be correlated. For this reason, an autocorrelation function is implemented. By changing the value of this function the strength of the correlation of iv neighboring internal heat transfer coefficients to each other over a certain distance can be controlled. In order to test the effect that this correlation strength has on the low cycle fatigue life calculation, low and high values are chosen and analyzed. The magnitude of the prescribed uncertainty range of the internal heat transfer coefficient variation is varied to further study the effects on life. Investigated values include 5%, 10% and 20% for the straight ribbed passages and 10%, 20%, and 40% for both the tip and hub turns. As expected there is a significant dependence of low cycle fatigue life to the variation in internal heat transfer coefficients. For the 20/40% case, variations in life as high as 50-60% are recorded, furthermore a trend is observed showing that as the magnitude of the uncertainty range of internal heat transfer coefficients narrows so does the range of the low cycle fatigue life uncertainty

    Burnout in the pastoral ministry

    Get PDF

    Automated long-term EEG analysis to localize the epileptogenic zone

    Get PDF
    OBJECTIVE: We investigated the performance of automatic spike detection and subsequent electroencephalogram (EEG) source imaging to localize the epileptogenic zone (EZ) from long-term EEG recorded during video-EEG monitoring. METHODS: In 32 patients, spikes were automatically detected in the EEG and clustered according to their morphology. The two spike clusters with most single events in each patient were averaged and localized in the brain at the half-rising time and peak of the spike using EEG source imaging. On the basis of the distance from the sources to the resection and the known patient outcome after surgery, the performance of the automated EEG analysis to localize the EZ was quantified. RESULTS: In 28 out of the 32 patients, the automatically detected spike clusters corresponded with the reported interictal findings. The median distance to the resection in patients with Engel class I outcome was 6.5 and 15 mm for spike cluster 1 and 27 and 26 mm for cluster 2, at the peak and the half-rising time of the spike, respectively. Spike occurrence (cluster 1 vs. cluster 2) and spike timing (peak vs. half-rising) significantly influenced the distance to the resection (p < 0.05). For patients with Engel class II, III, and IV outcomes, the median distance increased to 36 and 36 mm for cluster 1. Localizing spike cluster 1 at the peak resulted in a sensitivity of 70% and specificity of 100%, positive prediction value (PPV) of 100%, and negative predictive value (NPV) of 53%. Including the results of spike cluster 2 led to an increased sensitivity of 79% NPV of 55% and diagnostic OR of 11.4, while the specificity dropped to 75% and the PPV to 90%. SIGNIFICANCE: We showed that automated analysis of long-term EEG recordings results in a high sensitivity and specificity to localize the epileptogenic focus

    Some like it cold: molecular emission and effective dust temperatures of dense cores in the Pipe Nebula

    Get PDF
    J. Forbrich, et al., “Some like it cold: molecular emission and effective dust temperatures of dense cores in the Pipe Nebula”, Astronomy & Astrophysics, Vol. 568, August 2014. This version of record is available online at: https://www.aanda.org/articles/aa/abs/2014/08/aa23913-14/aa23913-14.html Reproduced with Permission from Astronomy and Astrophysics, © ESO 2014.Aims. The Pipe Nebula is characterized by a low star-formation rate and is therefore an ideal environment to explore how initial conditions, including core characteristics, affect star-formation efficiencies. Methods. In a continued study of the molecular core population of the Pipe Nebula, we present a molecular-line survey of 52 cores. Previous research has shown a variety of different chemical evolutionary stages among the cores. Using the Mopra Radio Telescope, we observed the ground rotational transitions of HCO+, H13CO+, HCN, H13CN, HNC, and N2H+. These data are complemented with near-infrared extinction maps to constrain the column densities, effective dust temperatures derived from Herschel data, and NH3-based gas kinetic temperatures. Results. The target cores are located across the nebula, span visual extinctions between 5 and 67 mag, and effective dust temperatures (averaged along the lines of sight) between 13 and 19 K. The extinction-normalized integrated line intensities, a proxy for the abundance in constant excitation conditions of optically thin lines, vary within an order of magnitude for a given molecule. The effective dust temperatures and gas kinetic temperatures are correlated, but the effective dust temperatures are consistently higher than the gas kinetic temperatures. Combining the molecular line and temperature data, we find that N2H+ is only detected toward the coldest and densest cores, while other lines show no correlation with these core properties. Conclusions. Within this large sample, N2H+ is the only species to exclusively trace the coldest and densest cores, in agreement with chemical considerations. In contrast, the common high-density tracers HCN and HNC are present in a majority of the cores, demonstrating the utility of these molecules for characterizing cores over a wide range of extinctions. The correlation between the effective dust temperatures and the gas kinetic temperatures suggests that the former are dominated by dust that is both dense and thermodynamically coupled to the dense gas traced by NH3. A direct use of the effective dust temperatures in a determination of dust column densities from dust emission measurements would, however, result in an underestimate of the dust column densities.Peer reviewe
    corecore