247 research outputs found

    Topography and Tilt at Volcanoes

    Get PDF
    For optimal monitoring of the deformation of a volcano, instrumentation should be deployed at the location most sensitive to changes at the suspected deformation source. The topographic effect on tilt depends strongly on the orientation of the deformation field relative to the surface on which the instrument is deployed. This fact has long been understood and corrected for in tilt measurements related to body tides and referred to as “cavity” or “topographic effects” (Harrison, 1976). Despite this, and whilst topography at volcanoes is often significant, until now the topographic effect on tilt at volcanoes has not been systematically explored. Here, we investigate the topographic effect on tilt produced by either the pressurization of a reservoir or conduit, or shear stress as magma ascends through a conduit, using 2D axisymmetric and 3D finite element deformation modeling. We show that topography alone can amplify or reduce the tilt by more than an order of magnitude, and control the orientation of the maximum tilt. Therefore, a decrease in tilt can even be caused by an increase in deformation at the source. Hence, inverting for the source stress using simple analytical models that neglect topography could potentially lead to a misinterpretation of how the volcanic system is evolving. Since topographic features can amplify the tilt signal, they can be exploited when deciding upon an installation site

    Corrigendum: Topography and Tilt at Volcanoes

    Get PDF

    Combining Magma Flow and Deformation Modeling to Explain Observed Changes in Tilt

    Get PDF
    The understanding of magma ascent dynamics is essential in forecasting the scale, style and timing of volcanic eruptions. The monitoring of near-field deformation is widely used to gain insight into these dynamics, and has been linked to stress changes in the upper conduit. The ascent of magma through the conduit exerts shear stress on the conduit wall, pulling up the surrounding edifice, whilst overpressure in the upper conduit pushes the surrounding edifice outwards. How much shear stress and pressure is produced during magma ascent, and the relative contribution of each to the deformation, has until now only been explored conceptually. By combining flow and deformation modeling using COMSOL Multiphysics, we for the first time present a quantitative model that links magma ascent to deformation. We quantify how both shear stress and pressure vary spatially within a cylindrical conduit, and show that shear stress generally dominates observed changes in tilt close to the conduit. However, the relative contribution of pressure is not insignificant, and both pressure and shear stress must be considered when interpreting deformation data. We demonstrate that significant changes in tilt can be driven by changes in the driving pressure gradient or volatile content of the magma. The relative contribution of shear stress and pressure to the tilt varies considerably depending on these parameters. Our work provides insight into the range of elastic moduli that should be considered when modeling edifice-scale rock masses, and we show that even where the edifice is modeled as weak, shear stress generally dominates the near field deformation over pressurization of the conduit. While our model addresses cyclic tilt changes observed during activity at Tungurahua volcano, Ecuador, between 2013 and 2014, it is also applicable to silicic volcanoes in general

    Physio4FMD: protocol for a multicentre randomised controlled trial of specialist physiotherapy for functional motor disorder

    Get PDF
    Background Patients with functional motor disorder (FMD) experience persistent and disabling neurological symptoms such as weakness, tremor, dystonia and disordered gait. Physiotherapy is usually considered an important part of treatment; however, sufficiently-powered controlled studies are lacking. Here we present the protocol of a randomised controlled trial (RCT) that aims to evaluate the clinical and cost effectiveness of a specialist physiotherapy programme for FMD. Methods/design The trial is a pragmatic, multicentre, single blind parallel arm randomised controlled trial (RCT). 264 Adults with a clinically definite diagnosis of FMD will be recruited from neurology clinics and randomised to receive either the trial intervention (a specialist physiotherapy protocol) or treatment as usual control (referral to a community physiotherapy service suitable for people with neurological symptoms). Participants will be followed up at 6 and 12 months. The primary outcome is the Physical Function domain of the Short Form 36 questionnaire at 12 months. Secondary domains of measurement will include participant perception of change, mobility, health-related quality of life, health service utilisation, anxiety and depression. Health economic analysis will evaluate the cost impact of trial and control interventions from a health and social care perspective as well as societal perspective. Discussion This trial will be the first adequately-powered RCT of physical-based rehabilitation for FMD. Trial registration International Standard Randomised Controlled Trials Number ISRCTN56136713. Registered 27 March 2018

    Physio4FMD: protocol for a multicentre randomised controlled trial of specialist physiotherapy for functional motor disorder.

    Get PDF
    BACKGROUND: Patients with functional motor disorder (FMD) experience persistent and disabling neurological symptoms such as weakness, tremor, dystonia and disordered gait. Physiotherapy is usually considered an important part of treatment; however, sufficiently-powered controlled studies are lacking. Here we present the protocol of a randomised controlled trial (RCT) that aims to evaluate the clinical and cost effectiveness of a specialist physiotherapy programme for FMD. // METHODS/DESIGN: The trial is a pragmatic, multicentre, single blind parallel arm randomised controlled trial (RCT). 264 Adults with a clinically definite diagnosis of FMD will be recruited from neurology clinics and randomised to receive either the trial intervention (a specialist physiotherapy protocol) or treatment as usual control (referral to a community physiotherapy service suitable for people with neurological symptoms). Participants will be followed up at 6 and 12 months. The primary outcome is the Physical Function domain of the Short Form 36 questionnaire at 12 months. Secondary domains of measurement will include participant perception of change, mobility, health-related quality of life, health service utilisation, anxiety and depression. Health economic analysis will evaluate the cost impact of trial and control interventions from a health and social care perspective as well as societal perspective. // DISCUSSION: This trial will be the first adequately-powered RCT of physical-based rehabilitation for FMD

    Alterations in the gut microbiome implicate key taxa and metabolic pathways across inflammatory arthritis phenotypes

    Get PDF
    Musculoskeletal diseases affect up to 20% of adults worldwide. The gut microbiome has been implicated in inflammatory conditions, but large-scale metagenomic evaluations have not yet traced the routes by which immunity in the gut affects inflammatory arthritis. To characterize the community structure and associated functional processes driving gut microbial involvement in arthritis, the Inflammatory Arthritis Microbiome Consortium investigated 440 stool shotgun metagenomes comprising 221 adults diagnosed with rheumatoid arthritis, ankylosing spondylitis, or psoriatic arthritis and 219 healthy controls and individuals with joint pain without an underlying inflammatory cause. Diagnosis explained about 2% of gut taxonomic variability, which is comparable in magnitude to inflammatory bowel disease. We identified several candidate microbes with differential carriage patterns in patients with elevated blood markers for inflammation. Our results confirm and extend previous findings of increased carriage of typically oral and inflammatory taxa and decreased abundance and prevalence of typical gut clades, indicating that distal inflammatory conditions, as well as local conditions, correspond to alterations to the gut microbial composition. We identified several differentially encoded pathways in the gut microbiome of patients with inflammatory arthritis, including changes in vitamin B salvage and biosynthesis and enrichment of iron sequestration. Although several of these changes characteristic of inflammation could have causal roles, we hypothesize that they are mainly positive feedback responses to changes in host physiology and immune homeostasis. By connecting taxonomic alternations to functional alterations, this work expands our understanding of the shifts in the gut ecosystem that occur in response to systemic inflammation during arthritis

    Integrin α5β1 Function Is Regulated by XGIPC/kermit2 Mediated Endocytosis during Xenopus laevis Gastrulation

    Get PDF
    During Xenopus gastrulation α5β1 integrin function is modulated in a temporally and spatially restricted manner, however, the regulatory mechanisms behind this regulation remain uncharacterized. Here we report that XGIPC/kermit2 binds to the cytoplasmic domain of the α5 subunit and regulates the activity of α5β1 integrin. The interaction of kermit2 with α5β1 is essential for fibronectin (FN) matrix assembly during the early stages of gastrulation. We further demonstrate that kermit2 regulates α5β1 integrin endocytosis downstream of activin signaling. Inhibition of kermit2 function impairs cell migration but not adhesion to FN substrates indicating that integrin recycling is essential for mesoderm cell migration. Furthermore, we find that the α5β1 integrin is colocalized with kermit2 and Rab 21 in embryonic and XTC cells. These data support a model where region specific mesoderm induction acts through kermit2 to regulate the temporally and spatially restricted changes in adhesive properties of the α5β1 integrin through receptor endocytosis

    Measurement of the cross-section of high transverse momentum vector bosons reconstructed as single jets and studies of jet substructure in pp collisions at √s = 7 TeV with the ATLAS detector

    Get PDF
    This paper presents a measurement of the cross-section for high transverse momentum W and Z bosons produced in pp collisions and decaying to all-hadronic final states. The data used in the analysis were recorded by the ATLAS detector at the CERN Large Hadron Collider at a centre-of-mass energy of √s = 7 TeV;{\rm Te}{\rm V}andcorrespondtoanintegratedluminosityof and correspond to an integrated luminosity of 4.6\;{\rm f}{{{\rm b}}^{-1}}.ThemeasurementisperformedbyreconstructingtheboostedWorZbosonsinsinglejets.ThereconstructedjetmassisusedtoidentifytheWandZbosons,andajetsubstructuremethodbasedonenergyclusterinformationinthejetcentreofmassframeisusedtosuppressthelargemultijetbackground.ThecrosssectionforeventswithahadronicallydecayingWorZboson,withtransversemomentum. The measurement is performed by reconstructing the boosted W or Z bosons in single jets. The reconstructed jet mass is used to identify the W and Z bosons, and a jet substructure method based on energy cluster information in the jet centre-of-mass frame is used to suppress the large multi-jet background. The cross-section for events with a hadronically decaying W or Z boson, with transverse momentum {{p}_{{\rm T}}}\gt 320\;{\rm Ge}{\rm V}andpseudorapidity and pseudorapidity |\eta |\lt 1.9,ismeasuredtobe, is measured to be {{\sigma }_{W+Z}}=8.5\pm 1.7$ pb and is compared to next-to-leading-order calculations. The selected events are further used to study jet grooming techniques

    Search for direct pair production of the top squark in all-hadronic final states in proton-proton collisions at s√=8 TeV with the ATLAS detector

    Get PDF
    The results of a search for direct pair production of the scalar partner to the top quark using an integrated luminosity of 20.1fb−1 of proton–proton collision data at √s = 8 TeV recorded with the ATLAS detector at the LHC are reported. The top squark is assumed to decay via t˜→tχ˜01 or t˜→ bχ˜±1 →bW(∗)χ˜01 , where χ˜01 (χ˜±1 ) denotes the lightest neutralino (chargino) in supersymmetric models. The search targets a fully-hadronic final state in events with four or more jets and large missing transverse momentum. No significant excess over the Standard Model background prediction is observed, and exclusion limits are reported in terms of the top squark and neutralino masses and as a function of the branching fraction of t˜ → tχ˜01 . For a branching fraction of 100%, top squark masses in the range 270–645 GeV are excluded for χ˜01 masses below 30 GeV. For a branching fraction of 50% to either t˜ → tχ˜01 or t˜ → bχ˜±1 , and assuming the χ˜±1 mass to be twice the χ˜01 mass, top squark masses in the range 250–550 GeV are excluded for χ˜01 masses below 60 GeV
    corecore