317 research outputs found

    Immunohistochemical characterization of the 'intimal proliferation' phenomenon in Sneddon's syndrome and essential thrombocythaemia

    Get PDF
    Cellular changes were immunocytochemically characterized in skin vessels of five patients with idiopathic generalized racemose livedo (Sneddon's syndrome), and one patient with localized racemose livedo associated with essential thrombocythaemia. Antibodies against alpha-smooth muscle-actin, tropomyosin, desmin, vimentin, factor VIII-related antigen, human endothelial cells (CD31), human macrophages (CD68), and HLA-DR positive cells (CR3/43) were used. Conventional light microscopy showed, in all cases, intimal thickening of ascending arteries and arterioles as a result of an accumulation of cells and extracellular hyalinized material. None of the specimens showed infiltration with polymorphonuclear leucocytes or macrophages. The cells in the region of the intimal hyperplasia showed intense positive immunostaining for alpha-smooth muscle actin and tropomyosin. Staining for the intermediate filament desmin was localized to the resident smooth muscle cells of the media, whereas staining for vimentin was found in all types of cells in both the intima and media. Positive immunostaining for factor VIII-related antigen and CD31 was strictly confined to the endothelial cells lining the narrowed lumina of the vessels. No positive staining with either antibody was observed in totally occluded vessels. Cells in the subintimal space did not show reactivity for CD68 in any of the specimens, but two cases showed solitary cells with positive staining for HLA-DR in this region. There were no differences in staining pattern between Sneddon's syndrome and essential thrombocythaemia with any of the antibodies. Our results support the assumption that the 'intimal proliferation' in both diseases is caused by colonization of the subendothelial space with contractile cells of possible smooth muscle origin.(ABSTRACT TRUNCATED AT 250 WORDS

    Kinetic Signatures and Intermittent Turbulence in the Solar Wind Plasma

    Full text link
    A connection between kinetic processes and intermittent turbulence is observed in the solar wind plasma using measurements from the Wind spacecraft at 1 AU. In particular, kinetic effects such as temperature anisotropy and plasma heating are concentrated near coherent structures, such as current sheets, which are non-uniformly distributed in space. Furthermore, these coherent structures are preferentially found in plasma unstable to the mirror and firehose instabilities. The inhomogeneous heating in these regions, which is present in both the magnetic field parallel and perpendicular temperature components, results in protons at least 3-4 times hotter than under typical stable plasma conditions. These results offer a new understanding of kinetic processes in a turbulent regime, where linear Vlasov theory is not sufficient to explain the inhomogeneous plasma dynamics operating near non-Gaussian structures.Comment: 4 pages, 3 figures, submitted to Physical Review Letter

    On Collisionless Electron-Ion Temperature Equilibration in the Fast Solar Wind

    Full text link
    We explore a mechanism, entirely new to the fast solar wind, of electron heating by lower hybrid waves to explain the shift to higher charge states observed in various elements in the fast wind at 1 A.U. relative to the original coronal hole plasma. This process is a variation on that previously discussed for two temperature accretion flows by Begelman & Chiueh. Lower hybrid waves are generated by gyrating minor ions (mainly alpha-particles) and become significant once strong ion cyclotron heating sets in beyond 1.5 R_sun. In this way the model avoids conflict with SUMER electron temperature diagnostic measurements between 1 and 1.5 R_sun. The principal requirement for such a process to work is the existence of density gradients in the fast solar wind, with scale length of similar order to the proton inertial length. Similar size structures have previously been inferred by other authors from radio scintillation observations and considerations of ion cyclotron wave generation by global resonant MHD waves.Comment: 32 pages including 11 figures, 4 tables, accepted by Ap

    A nonextensive entropy approach to solar wind intermittency

    Full text link
    The probability distributions (PDFs) of the differences of any physical variable in the intermittent, turbulent interplanetary medium are scale dependent. Strong non-Gaussianity of solar wind fluctuations applies for short time-lag spacecraft observations, corresponding to small-scale spatial separations, whereas for large scales the differences turn into a Gaussian normal distribution. These characteristics were hitherto described in the context of the log-normal, the Castaing distribution or the shell model. On the other hand, a possible explanation for nonlocality in turbulence is offered within the context of nonextensive entropy generalization by a recently introduced bi-kappa distribution, generating through a convolution of a negative-kappa core and positive-kappa halo pronounced non-Gaussian structures. The PDFs of solar wind scalar field differences are computed from WIND and ACE data for different time lags and compared with the characteristics of the theoretical bi-kappa functional, well representing the overall scale dependence of the spatial solar wind intermittency. The observed PDF characteristics for increased spatial scales are manifest in the theoretical distribution functional by enhancing the only tuning parameter κ\kappa, measuring the degree of nonextensivity where the large-scale Gaussian is approached for κ\kappa \to \infty. The nonextensive approach assures for experimental studies of solar wind intermittency independence from influence of a priori model assumptions. It is argued that the intermittency of the turbulent fluctuations should be related physically to the nonextensive character of the interplanetary medium counting for nonlocal interactions via the entropy generalization.Comment: 17 pages, 7 figures, accepted for publication in Astrophys.

    SUMER: Solar Ultraviolet Measurements of Emitted Radiation

    Get PDF
    The SUMER (solar ultraviolet measurements of emitted radiation) experiment is described. It will study flows, turbulent motions, waves, temperatures and densities of the plasma in the upper atmosphere of the Sun. Structures and events associated with solar magnetic activity will be observed on various spatial and temporal scales. This will contribute to the understanding of coronal heating processes and the solar wind expansion. The instrument will take images of the Sun in EUV (extreme ultra violet) light with high resolution in space, wavelength and time. The spatial resolution and spectral resolving power of the instrument are described. Spectral shifts can be determined with subpixel accuracy. The wavelength range extends from 500 to 1600 angstroms. The integration time can be as short as one second. Line profiles, shifts and broadenings are studied. Ratios of temperature and density sensitive EUV emission lines are established

    Computation of Kolmogorov's Constant in Magnetohydrodynamic Turbulence

    Get PDF
    In this paper we calculate Kolmogorov's constant for magnetohydrodynamic turbulence to one loop order in perturbation theory using the direct interaction approximation technique of Kraichnan. We have computed the constants for various Eu(k)/Eb(k)E^u(k)/E^b(k), i.e., fluid to magnetic energy ratios when the normalized cross helicity is zero. We find that KK increases from 1.47 to 4.12 as we go from fully fluid case (Eb=0)(E^b=0) to a situation when Eu/Eb=0.5% E^u/E^b=0.5, then it decreases to 3.55 in a fully magnetic limit (Eu=0)(E^u=0). When Eu/Eb=1E^u/E^b=1, we find that K=3.43K=3.43.Comment: Latex, 10 pages, no figures, To appear in Euro. Phys. Lett., 199

    Magnetic moment non-conservation in magnetohydrodynamic turbulence models

    Full text link
    The fundamental assumptions of the adiabatic theory do not apply in presence of sharp field gradients as well as in presence of well developed magnetohydrodynamic turbulence. For this reason in such conditions the magnetic moment μ\mu is no longer expected to be constant. This can influence particle acceleration and have considerable implications in many astrophysical problems. Starting with the resonant interaction between ions and a single parallel propagating electromagnetic wave, we derive expressions for the magnetic moment trapping width Δμ\Delta \mu (defined as the half peak-to-peak difference in the particle magnetic moment) and the bounce frequency ωb\omega_b. We perform test-particle simulations to investigate magnetic moment behavior when resonances overlapping occurs and during the interaction of a ring-beam particle distribution with a broad-band slab spectrum. We find that magnetic moment dynamics is strictly related to pitch angle α\alpha for a low level of magnetic fluctuation, δB/B0=(103,102)\delta B/B_0 = (10^{-3}, \, 10^{-2}), where B0B_0 is the constant and uniform background magnetic field. Stochasticity arises for intermediate fluctuation values and its effect on pitch angle is the isotropization of the distribution function f(α)f(\alpha). This is a transient regime during which magnetic moment distribution f(μ)f(\mu) exhibits a characteristic one-sided long tail and starts to be influenced by the onset of spatial parallel diffusion, i.e., the variance grows linearly in time as in normal diffusion. With strong fluctuations f(α)f(\alpha) isotropizes completely, spatial diffusion sets in and f(μ)f(\mu) behavior is closely related to the sampling of the varying magnetic field associated with that spatial diffusion.Comment: 13 pages, 10 figures, submitted to PR

    Multiscaling of galactic cosmic ray flux

    Full text link
    Multiscaling analysis of differential flux dissipation rate of galactic cosmic rays (Carbon nuclei) is performed in the energy ranges: 56.3-73.4 Mev/nucleon and 183.1-198.7 MeV/nucleon, using the data collected by ACE/CRIS spacecraft instrument for 2000 year. The analysis reveals strong (turbulence-like) intermittency of the flux dissipation rate for the short-term intervals: 1-30 hours. It is also found that type of the intermittency can be different in different energy ranges

    Impact of observational uncertainties on universal scaling of MHD turbulence

    Full text link
    Scaling exponents are the central quantitative prediction of theories of turbulence and in-situ satellite observations of the high Reynolds number solar wind flow have provided an extensive testbed of these. We propose a general, instrument independent method to estimate the uncertainty of velocity field fluctuations. We obtain the systematic shift that this uncertainty introduces into the observed spectral exponent. This shift is essential for the correct interpretation of observed scaling exponents. It is sufficient to explain the contradiction between spectral features of the Elsasser fields observed in the solar wind with both theoretical models and numerical simulations of Magnetohydrodynamic turbulence

    The role of compressibility in solar wind plasma turbulence

    Full text link
    Incompressible Magnetohydrodynamics is often assumed to describe solar wind turbulence. We use extended self similarity to reveal scaling in structure functions of density fluctuations in the solar wind. Obtained scaling is then compared with that found in the inertial range of quantities identified as passive scalars in other turbulent systems. We find that these are not coincident. This implies that either solar wind turbulence is compressible, or that straightforward comparison of structure functions does not adequately capture its inertial range properties.Comment: 4 pages, 7 figure
    corecore