24 research outputs found

    Investigating the slow component of the infrared scintillation time response in gaseous xenon

    Full text link
    Xenon is the target material of choice in several rare event searches. The use of infrared (IR) scintillation light, in addition to the commonly used vacuum ultraviolet (VUV) light, could increase the sensitivity of these experiments. Understanding the IR scintillation response of xenon is essential in assessing the potential for improvement. This study focuses on characterizing the time response and light yield (LY) of IR scintillation in gaseous xenon for alpha particles at atmospheric pressure and room temperature. We have previously observed that the time response can be described by two components: one with a fast time constant of O(ns) and one with a slow time constant of O(μ\mathrm{\mu}s). This work presents new measurements that improve our understanding of the slow component. The experimental setup was modified to allow for a measurement of the IR scintillation time response with a ten times longer time window of about 3 μ\mathrm{\mu}s, effectively mitigating the dominant systematic uncertainty of the LY measurement. We find that the slow component at about 1 bar pressure can be described by a single exponential function with a decay time of about 850 ns. The LY is found to be (6347 ±\pm 22 (stat) ±\pm 400 (syst)) ph / MeV, consistent with our previous measurement. In addition, a measurement with zero electric field along the alpha particle tracks was conducted to rule out the possibility that the slow component is dominated by light emission from drifting electrons or the recombination of electrons and ions.Comment: 9 pages, 4 figure

    Transmission of xenon scintillation light through PTFE

    Full text link
    Polytetrafluoroethylene (PTFE), also known as Teflon, is a common material used in the construction of liquid xenon detectors due to its high reflectivity for the VUV scintillation light of xenon. We present transmission measurements of PTFE for xenon scintillation light with peak emission at a wavelength of 175 nm. PTFE discs of different thicknesses are installed in front of a photosensor in two setups. One is filled with gaseous xenon, the other with liquid xenon. The measurements performed with the gaseous xenon setup at room temperature yield a transmission coefficient of λ=(350 0+60(sys)±50(stat))μm\lambda = \bigl(350{{}^{+60}_{~-0}}{}\,{\mathrm{(sys)}}\,\pm\, 50\,{\mathrm{(stat)}}\bigr)\,\mathrm{\mu m}. This is found to be in agreement with the observations made using the liquid xenon setup.Comment: 12 pages, 5 figures, 2 tables; accepted for publication in JINS

    Scintillation decay-time constants for alpha particles and electrons in liquid xenon

    Full text link
    Understanding liquid xenon scintillation and ionization processes is of great interest to improve analysis methods in current and future detectors. In this paper, we investigate the dynamics of the scintillation process for excitation by O\mathcal{O}(10 keV) electrons from a 83m^{83m}Kr source and O\mathcal{O}(6 MeV) α\alpha-particles from a 222^{222}Rn source, both mixed with the xenon target. The single photon sampling method is used to record photon arrival times in order to obtain the corresponding time distributions for different applied electric fields between about 0.8 V/cm to 1.2 kV/cm. Energy and field dependences of the signals which are observed in the results are discussed.Comment: 11 pages, 9 figures; replaced with published manuscript versio

    First time-resolved measurement of infrared scintillation light in gaseous xenon

    Full text link
    Xenon is a widely used detector target material due to its excellent scintillation properties in the ultraviolet (UV) spectrum. The additional use of infrared (IR) scintillation light could improve future detectors. However, a comprehensive characterization of the IR component is necessary to explore its potential. We report on the first measurement of the time profile of the IR scintillation response of gaseous xenon. Our setup consists of a gaseous xenon target irradiated by an alpha particle source and is instrumented with one IR- and two UV-sensitive photomultiplier tubes. Thereby, it enables IR timing measurements with nanosecond resolution and simultaneous measurement of UV and IR signals. We find that the IR light yield is in the same order of magnitude as the UV yield. We observe that the IR pulses can be described by a fast and a slow component and demonstrate that the size of the slow component decreases with increasing levels of impurities in the gas. Moreover, we study the IR emission as a function of pressure. These findings confirm earlier observations and advance our understanding of the IR scintillation response of gaseous xenon, which could have implications for the development of novel xenon-based detectors.Comment: 11 pages, 10 figure

    Characterization of alpha and beta interactions in liquid xenon

    Full text link
    Liquid xenon based detectors have achieved great sensitivities in rare event searches. Precise knowledge of the scintillation and ionization responses of the medium is essential to correctly model different interaction types in the detector including both signal and background-like ones. The response of liquid xenon to low energy electrons and to alpha particles has been studied in the Heidelberg Xenon (HeXe) dual-phase xenon TPC. We determine the light and charge signal yields for keV-energy electrons and MeV-energy alpha particles as well as the electron drift velocity for electric drift fields between 7.5 and 1640 V/cm. A three dimensional simulation using COMSOL Multiphysics(R) is used to characterize the applied drift field and its homogeneity.Comment: 16 pages, 21 figures. Associated data is available under https://doi.org/10.5281/zenodo.552521

    In vitro adherence of conjunctival bacteria to different oculoplastic materials

    Get PDF
    AIM: To investigate the resistance to bacterial adhesion of materials used in oculoplastic surgery, particularly materials used in the manufacture of orbital implants. METHODS: Seven organisms of conjunctival flora (two strains of Staphylococcus epidermidis and one strain each of Staphylococcus aureus, Staphylococcus hominis, Corynebacterium amycolatum, Acinetobacter calcoaceticus, and Serratia marcescens) were selected. A lactic acid bacterium (Lactobacillus rhamnosus) was also included as positive control because of its well-known adhesion ability. Eight materials used to make oculoplastic prostheses were selected (glass, steel, polytetrafluoroethylene, polymethylmethacrylate, silicone from orbital implants, commercial silicone, porous polyethylene, and semi-smooth polyethylene). Materials surfaces and biofilms developed by strains were observed by scanning electron microscopy. Kinetics of growth and adhesion of bacterial strains were determined by spectrophotometry. Each strain was incubated in contact with plates of the different materials. After growth, attached bacteria were re-suspended and colony-forming units (CFUs) were counted. The number of CFUs per square millimetre of material was statistically analyzed. RESULTS: A mature biofilm was observed in studied strains except Staphylococcus hominis, which simply produced a microcolony. Materials showed a smooth surface on the microbial scale, although steel exhibited 1.0-μm-diameter grooves. Most organisms showed significant differences in adhesion according to the material. There were also significant differences in the total number of CFUs per square millimetre from each material (P=0.044). CFU counts were significantly higher in porous polyethylene than in silicone from orbital implants (P=0.038). CONCLUSION: Silicone orbital implants can resist microbial colonization better than porous polyethylene implants

    Revisiting the epidemiology of bloodstream infections and healthcare-associated episodes: results from a multicentre prospective cohort in Spain (PRO-BAC Study)

    Get PDF
    PROBAC REIPI/GEIH-SEIMC/SAEI Group.The epidemiology of bloodstream infections (BSIs) is dynamic as it depends on microbiological, host and healthcare system factors. The aim of this study was to update the information regarding the epidemiology of BSIs in Spain considering the type of acquisition. An observational, prospective cohort study in 26 Spanish hospitals from October 2016 through March 2017 including all episodes of BSI in adults was performed. Bivariate analyses stratified by type of acquisition were performed. Multivariate analyses were performed by logistic regression. Overall, 6345 BSI episodes were included; 2510 (39.8%) were community-acquired (CA), 1661 (26.3%) were healthcare-associated (HCA) and 2056 (32.6%) hospital-acquired (HA). The 30-day mortality rates were 11.6%, 19.5% and 22.0%, respectively. The median age of patients was 71 years (interquartile range 60–81 years) and 3656 (58.3%; 95% confidence interval 57.1–59.6%) occurred in males. The proportions according to patient sex varied according to age strata. Escherichia coli (43.8%), Klebsiella spp. (8.9%), Staphylococcus aureus (8.9%) and coagulase-negative staphylococci (7.4%) were the most frequent pathogens. Multivariate analyses confirmed important differences between CA and HCA episodes, but also between HCA and HA episodes, in demographics, underlying conditions and aetiology. In conclusion, we have updated the epidemiological information regarding patients’ profiles, underlying conditions, frequency of acquisition types and aetiological agents of BSI in Spain. HCA is confirmed as a distinct type of acquisition.This work was financed by grants from Plan Nacional de I+D+i 2013–2016, Instituto de Salud Carlos III, Subdirección General de Redes y Centros de Investigación Cooperativa, Ministerio de Ciencia, Innovación y Universidades [PI16/01432] and the Spanish Network for Research in Infectious Diseases (REIPI) [RD16/0016/0001; RD16/0016/0008], co‐financed by the European Development Regional Fund ‘A way to achieve Europe’, Operative program Intelligent Growth 2014–2020

    Conversion of methylamine in a flow reactor and its interaction with NO

    Get PDF
    The conversion of methylamine (CH3NH2, 1000 ppm) has been studied in an atmospheric-pressure flow reactor from both experimental and modeling points of view. Several values of the oxygen excess ratio (λ), from pyrolysis to fuel-lean conditions, have been tested, and a large number of different species have been quantified experimentally by three different diagnostic techniques: gas chromatography, Fourier Transform Infra-red spectroscopy (FTIR) and an infra-red NO analyzer. For the first time, the influence of NO addition (500 and 1000 ppm) on the stoichiometric oxidation of methylamine has also been experimentally evaluated, and the main products of such interaction have been identified. Results indicate that, unlike the little influence of oxygen availability on methylamine conversion, the presence of different concentrations of NO promotes methylamine oxidation at lower temperatures. A literature mechanism has been validated against the present experimental data since previous experimental works under these conditions are scarce. The largest discrepancies have been found for the formation of NH3 and NO as oxidation products, which are under and overestimated by the model, respectively, and under pyrolysis conditions, where modification of the kinetic parameters for the reaction CH2NH2 ⇌ CH2NH + H from the original mechanism notably improves the agreement between experimental and simulated results
    corecore