2,233 research outputs found
Spotting the differences between active and non-active twin galaxies on kpc-scales. A pilot study
We present a pilot study aimed to identify large-scale galaxy properties that
could play a role in activating a quiescent nucleus. To do so, we compare the
properties of two isolated nearby active galaxies and their non-active twins
selected from the Calar Alto Legacy Integral Field Area (CALIFA) survey. This
pilot sample includes two barred and two unbarred galaxies. We characterise the
stellar and ionised gas kinematics and also their stellar content. We obtain
simple kinematic models by fitting the full stellar and ionised gas velocity
fields and just the approaching/receding sides. We find that the analysed
active galaxies present lopsided disks and higher values of the global stellar
angular momentum () than their non-active twins. This could be
indicating that the stellar disks of the AGN gained angular momentum from the
inflowing gas that triggered the nuclear activity. The inflow of gas could have
been produced by a twisted disk instability in the case of the unbarred AGN,
and by the bar in the case of the barred AGN. In addition, we find that the
central regions of the studied active galaxies show older stellar populations
than their non-active twins. The next step is to statistically explore these
galaxy properties in a larger sample of twin galaxies.Comment: 24 pages, 24 figures. Accepted by MNRA
Resolving the age bimodality of galaxy stellar populations on kpc scales
Galaxies in the local Universe are known to follow bimodal distributions in
the global stellar populations properties. We analyze the distribution of the
local average stellar-population ages of 654,053 sub-galactic regions resolved
on ~1-kpc scales in a volume-corrected sample of 394 galaxies, drawn from the
CALIFA-DR3 integral-field-spectroscopy survey and complemented by SDSS imaging.
We find a bimodal local-age distribution, with an old and a young peak
primarily due to regions in early-type galaxies and star-forming regions of
spirals, respectively. Within spiral galaxies, the older ages of bulges and
inter-arm regions relative to spiral arms support an internal age bimodality.
Although regions of higher stellar-mass surface-density, mu*, are typically
older, mu* alone does not determine the stellar population age and a bimodal
distribution is found at any fixed mu*. We identify an "old ridge" of regions
of age ~9 Gyr, independent of mu*, and a "young sequence" of regions with age
increasing with mu* from 1-1.5 Gyr to 4-5 Gyr. We interpret the former as
regions containing only old stars, and the latter as regions where the relative
contamination of old stellar populations by young stars decreases as mu*
increases. The reason why this bimodal age distribution is not inconsistent
with the unimodal shape of the cosmic-averaged star-formation history is that
i) the dominating contribution by young stars biases the age low with respect
to the average epoch of star formation, and ii) the use of a single average age
per region is unable to represent the full time-extent of the star-formation
history of "young-sequence" regions.Comment: 17 pages, 11 figures, MNRAS accepte
The effects of spatial resolution on Integral Field Spectrograph surveys at different redshifts. The CALIFA perspective
Over the past decade, 3D optical spectroscopy has become the preferred tool
for understanding the properties of galaxies and is now increasingly used to
carry out galaxy surveys. Low redshift surveys include SAURON, DiskMass,
ATLAS3D, PINGS and VENGA. At redshifts above 0.7, surveys such as MASSIV, SINS,
GLACE, and IMAGES have targeted the most luminous galaxies to study mainly
their kinematic properties. The on-going CALIFA survey () is the
first of a series of upcoming Integral Field Spectroscopy (IFS) surveys with
large samples representative of the entire population of galaxies. Others
include SAMI and MaNGA at lower redshift and the upcoming KMOS surveys at
higher redshift. Given the importance of spatial scales in IFS surveys, the
study of the effects of spatial resolution on the recovered parameters becomes
important. We explore the capability of the CALIFA survey and a hypothetical
higher redshift survey to reproduce the properties of a sample of objects
observed with better spatial resolution at lower redshift. Using a sample of
PINGS galaxies, we simulate observations at different redshifts. We then study
the behaviour of different parameters as the spatial resolution degrades with
increasing redshift.Comment: 20 pages, 16 figures. Accepted for publication in A&
Stellar Population gradients in galaxy discs from the CALIFA survey
While studies of gas-phase metallicity gradients in disc galaxies are common,
very little has been done in the acquisition of stellar abundance gradients in
the same regions. We present here a comparative study of the stellar
metallicity and age distributions in a sample of 62 nearly face-on, spiral
galaxies with and without bars, using data from the CALIFA survey. We measure
the slopes of the gradients and study their relation with other properties of
the galaxies. We find that the mean stellar age and metallicity gradients in
the disc are shallow and negative. Furthermore, when normalized to the
effective radius of the disc, the slope of the stellar population gradients
does not correlate with the mass or with the morphological type of the
galaxies. Contrary to this, the values of both age and metallicity at 2.5
scale-lengths correlate with the central velocity dispersion in a similar
manner to the central values of the bulges, although bulges show, on average,
older ages and higher metallicities than the discs. One of the goals of the
present paper is to test the theoretical prediction that non-linear coupling
between the bar and the spiral arms is an efficient mechanism for producing
radial migrations across significant distances within discs. The process of
radial migration should flatten the stellar metallicity gradient with time and,
therefore, we would expect flatter stellar metallicity gradients in barred
galaxies. However, we do not find any difference in the metallicity or age
gradients in galaxies with without bars. We discuss possible scenarios that can
lead to this absence of difference.Comment: 24 pages, 17 figures, accepted for publication in A&
Ionized gas kinematics of galaxies in the CALIFA survey I: Velocity fields, kinematic parameters of the dominant component, and presence of kinematically distinct gaseous systems
This work provides an overall characterization of the kinematic behavior of
the ionized gas of the galaxies included in the Calar Alto Legacy Integral
field Area (CALIFA), offering kinematic clues to potential users of this survey
for including kinematical criteria for specific studies. From the first 200
galaxies observed by CALIFA, we present the 2D kinematic view of the 177
galaxies satisfying a gas detection threshold. After removing the stellar
contribution, we used the cross-correlation technique to obtain the radial
velocity of the dominant gaseous component. The main kinematic parameters were
directly derived from the radial velocities with no assumptions on the internal
motions. Evidence of the presence of several gaseous components with different
kinematics were detected by using [OIII] profiles. Most objects in the sample
show regular velocity fields, although the ionized-gas kinematics are rarely
consistent with simple coplanar circular motions. 35% of the objects present
evidence of a displacement between the photometric and kinematic centers larger
than the original spaxel radii. Only 17% of the objects in the sample exhibit
kinematic lopsidedness when comparing receding and approaching sides of the
velocity fields, but most of them are interacting galaxies exhibiting nuclear
activity. Early-type galaxies in the sample present clear photometric-kinematic
misaligments. There is evidence of asymmetries in the emission line profiles
suggesting the presence of kinematically distinct gaseous components at
different distances from the nucleus. This work constitutes the first
determination of the ionized gas kinematics of the galaxies observed in the
CALIFA survey. The derived velocity fields, the reported kinematic
peculiarities and the identification of the presence of several gaseous
components might be used as additional criteria for selecting galaxies for
specific studies.Comment: 38 pages, 16 figures, 4 tables. Paper accepted for publication in A&
Two-dimensional multi-component photometric decomposition of CALIFA galaxies
We present a two-dimensional multi-component photometric decomposition of 404 galaxies from the Calar Alto Legacy Integral Field Area Data Release 3 (CALIFA-DR3). They represent all possible galaxies with no clear signs of interaction and not strongly inclined in the final CALIFA data release. Galaxies are modelled in the g, r, and i Sloan Digital Sky Survey (SDSS) images including, when appropriate, a nuclear point source, bulge, bar, and an exponential or broken disc component. We use a human-supervised approach to determine the optimal number of structures to be included in the fit. The dataset, including the photometric parameters of the CALIFA sample, is released together with statistical errors and a visual analysis of the quality of each fit. The analysis of the photometric components reveals a clear segregation of the structural composition of galaxies with stellar mass. At high masses (log(M⋆/M⊙) > 11), the galaxy population is dominated by galaxies modelled with a single Sérsic or a bulge+disc with a bulge-to-total (B/T) luminosity ratio B/T > 0.2. At intermediate masses (9.5 < log(M⋆/M⊙) < 11), galaxies described with bulge+disc but B/T < 0.2 are preponderant, whereas, at the low mass end (log(M⋆/M⊙)< 9.5), the prevailing population is constituted by galaxies modelled with either pure discs or nuclear point sources+discs (i.e., no discernible bulge). We obtain that 57% of the volume corrected sample of disc galaxies in the CALIFA sample host a bar. This bar fraction shows a significant drop with increasing galaxy mass in the range 9.5 < log(M⋆/M⊙) < 11.5. The analyses of the extended multi-component radial profile result in a volume-corrected distribution of 62%, 28%, and 10% for the so-called Type I (pure exponential), Type II (down-bending), and Type III (up-bending) disc profiles, respectively. These fractions are in discordance with previous findings. We argue that the different methodologies used to detect the breaks are the main cause for these differences.PostprintPeer reviewe
CALIFA : a diameter-selected sample for an integral field spectroscopy galaxy survey
JMA acknowledges support from the European Research Council Starting Grant (SEDmorph; P.I. V. Wild).We describe and discuss the selection procedure and statistical properties of the galaxy sample used by the Calar Alto Legacy Integral Field Area (CALIFA) survey, a public legacy survey of 600 galaxies using integral field spectroscopy. The CALIFA "mother sample" was selected from the Sloan Digital Sky Survey (SDSS) DR7 photometric catalogue to include all galaxies with an r-band isophotal major axis between 45 '' and 79 : 2 '' and with a redshift 0 : 005 M-r > -23 : 1 and over a stellar mass range between 10(9.7) and 10(11.4) M-circle dot. In particular, within these ranges, the diameter selection does not lead to any significant bias against - or in favour of - intrinsically large or small galaxies. Only below luminosities of M-r = -19 (or stellar masses <10(9.7) M-circle dot) is there a prevalence of galaxies with larger isophotal sizes, especially of nearly edge-on late-type galaxies, but such galaxies form <10% of the full sample. We estimate volume-corrected distribution functions in luminosities and sizes and show that these are statistically fully compatible with estimates from the full SDSS when accounting for large-scale structure. For full characterization of the sample, we also present a number of value-added quantities determined for the galaxies in the CALIFA sample. These include consistent multi-band photometry based on growth curve analyses; stellar masses; distances and quantities derived from these; morphological classifications; and an overview of available multi-wavelength photometric measurements. We also explore different ways of characterizing the environments of CALIFA galaxies, finding that the sample covers environmental conditions from the field to genuine clusters. We finally consider the expected incidence of active galactic nuclei among CALIFA galaxies given the existing pre-CALIFA data, finding that the final observed CALIFA sample will contain approximately 30 Sey2 galaxies.Peer reviewe
Morpho-kinematic properties of field S0 bulges in the CALIFA survey
We study a sample of 28 S0 galaxies extracted from the integral-field
spectroscopic (IFS) survey CALIFA. We combine an accurate two-dimensional (2D)
multi-component photometric decomposition with the IFS kinematic properties of
their bulges to understand their formation scenario. Our final sample is
representative of S0s with high stellar masses ().
They lay mainly on the red sequence and live in relatively isolated
environments similar to that of the field and loose groups. We use our 2D
photometric decomposition to define the size and photometric properties of the
bulges, as well as their location within the galaxies. We perform mock
spectroscopic simulations mimicking our observed galaxies to quantify the
impact of the underlying disc on our bulge kinematic measurements (
and ). We compare our bulge corrected kinematic measurements with the
results from Schwarzschild dynamical modelling. The good agreement confirms the
robustness of our results and allows us to use bulge reprojected values of
and . We find that the photometric ( and ) and
kinematic ( and ) properties of our field S0 bulges are not
correlated. We demonstrate that this morpho-kinematic decoupling is intrinsic
to the bulges and it is not due to projection effects. We conclude that
photometric diagnostics to separate different types of bulges (disc-like vs
classical) might not be useful for S0 galaxies. The morpho-kinematics
properties of S0 bulges derived in this paper suggest that they are mainly
formed by dissipation processes happening at high redshift, but dedicated
high-resolution simulations are necessary to better identify their origin.Comment: 31 pages, 19 figures. Accepted for publication in MNRA
- …