1,997 research outputs found

    The potential of phytoremediation derived maize biomass for the production of biomethane via anaerobic digestion

    Get PDF
    Maize is an energetic plant with ability for heavy metals removal from contaminated soil. The growth and ability for heavy metals removal by this energetic culture was tested using an industrialised soil contaminated with zinc (Zn) and cadmium (Cd) vs. an agricultural soil. Plants biomass production and metal accumulation was monitored and resulting biomass (roots, stems and cobs) was used for biogas production in several biomethane assays (BMP) in a factorial design with different inoculum to substrate ratios being tested. The biogas produced during the anaerobic digestion was monitored until stable production and its composition was analysed through gas-chromatography. It was possible to observe that maximum methane production seems to be proportional to the amount of anaerobically degradable substrate and is quickly obtained (ca. 8 days after incubation). It was also noticeable that the metals present in the industrial soil were not damaging to the anaerobic biodegradation of the biomass. The production of biomethane from metal contaminated soils’ phytoremediation derived maize biomass appears thus as a possibility to counterpart biogas production in an increasingly demanding status of renewable energy requirementsinfo:eu-repo/semantics/publishedVersio

    Integration and embedding of vital signs sensors and other devices into textiles

    Get PDF
    The development of ubiquitous vital sign monitoring has become a very up-to-date research theme for many academics and industrial companies in the last years. With new materials and integration techniques, it is possible to implement vital sign monitoring in an economic manner, directly into textile products. This unobtrusive presence of sensors is especially important for the monitoring of children or elderly people. This paper focuses on two aspects of sensor integration: Integration of off-the-shelf electronic components, and the use of the textile material itself as sensor, or in general as an electrically active element presenting some exploratory work in the integration of electronic devices into textiles. The main objective was to reproduce and improve on previous work presented by other authors, and foster possibilities of developing garments for vital sign monitoring with immediate industrial and economic feasibility. The use of standard production techniques to produce textile-based sensors, easily integrated into garments and with mass-market potential, is one of the important motivations for this work

    Development of an injectable PHBV microparticles-GG hydrogel hybrid system for regenerative medicine

    Get PDF
    Uncontrollable displacements that greatly affect the concentration of active agents at the target tissues are among a major limitation of the use of microparticulate drug delivery systems (DDS). Under this context a biphasic injectable DDS combining poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) microparticles (MPs) and a gellan gum (GG) injectable hydrogel is herein proposed for the localized delivery and long-term retention of MPs carrying hydrophilic and hydrophobic model active agents. A double emulsion-solvent evaporation method was adopted to develop the PHBV MPs, carrying bovine serum albumin (BSA) or dexamethasone (Dex) as hydrophilic and hydrophobic active agents’ models, respectively. Moreover, this method was modified, together with the properties of the hydrogel to tailor the delivery profile of the active agents. Variations of the composition of the organic phase during the process allowed tuning surface topography, particle size distribution and core porosity of the PHBV MPs and, thus, the in vitro release profile of Dex but not of BSA. Besides, after embedding hydrogels of higher GG concentration led to a slower and more sustained release of both active agents, independently of the processing conditions of the microparticulate system.The authors would like to acknowledge the Project RL1 - ABMR - NORTE-01-0124-FEDER-000016 co-financed by North Portugal Regional Operational Programme (ON.2 - O Novo Norte), under the National Strategic Reference Framework (NSRF), through the European Regional Development Fund (ERDF). This work was partially supported by European Research Council grant agreement ERC-2012-ADG 20120216-321266 for project ComplexiTE

    The impact of pH on the anaerobic and aerobic metabolism of Tetrasphaera-enriched polyphosphate accumulating organisms

    Get PDF
    Funding Information: The authors thank the Portuguese Fundaçao para a Ciência e a Tecnologia, which supports the Applied Molecular Biosciences Unit - UCIBIO, the European Commission (Water JPI project 196 (Water-Works2014 ERA-NET Co-funded Call): “Smart decentralized water management through a dynamic integration of technologies (Watintech)” and the Australian Research Council ( ARC LP190100329 ). Publisher Copyright: © 2023Members of the genus Tetrasphaera are putative polyphosphate accumulating organisms (PAOs) that have been found in greater abundance than Accumulibacter in many full-scale enhanced biological phosphorus removal (EBPR) wastewater treatment plants worldwide. Nevertheless, previous studies on the effect of environmental conditions, such as pH, on the performance of EBPR have focused mainly on the response of Accumulibacter to pH changes. This study examines the impact of pH on a Tetrasphaera PAO enriched culture, over a pH range from 6.0 to 8.0 under both anaerobic and aerobic conditions, to assess its impact on the stoichiometry and kinetics of Tetrasphaera metabolism. It was discovered that the rates of phosphorus (P) uptake and P release increased with an increase of pH within the tested range, while PHA production, glycogen consumption and substrate uptake rate were less sensitive to pH changes. The results suggest that Tetrasphaera PAOs display kinetic advantages at high pH levels, which is consistent with what has been observed previously for Accumulibacter PAOs. The results of this study show that pH has a substantial impact on the P release and uptake kinetics of PAOs, where the P release rate was >3 times higher and the P uptake rate was >2 times higher at pH 8.0 vs pH 6.0, respectively. Process operational strategies promoting both Tetrasphaera and Accumulibacter activity at high pH do not conflict with each other, but lead to a potentially synergistic impact that can benefit EBPR performance.publishersversionpublishe

    Irreversible temperature indicator based cellulose membranes conjugated with leuco-dye pigment

    Get PDF
    This research focuses on the development of thermochromic membranes made of cellulose acetate (CA) for temperature monitoring of sensitive food products. Two dual TC membranes developed for the control of different temperature ranges were formulated using a three-component system: a leuco-dye membrane (crystal violet lactone, CVL) integrated with an acidic membrane containing the color developer (salicylic acid) and the acidic solvent with different melting points (decanoic acid, DA, or methacrylic acid, MA). The CVL membrane, together with the DA membrane, showed an irreversible color change when exposed to 35°C, which was facilitated by the melting of DA. The CVL membrane also underwent an irreversible color change when exposed to 15°C together with the MA membrane. The membranes were characterized in detail using scanning electron microscopy. The evaluation of color changes, reproducibility, specificity, and stability ensured the practical suitability of these membranes. Overall, this innovative approach has proven to be a reproducible, sustainable, cost-effective method to produce irreversible colorimetric temperature sensors. These sensors have significant potential for applications in the food and pharmaceutical industries and offer a promising way to improve product safety and quality.This project was a financially supported through the project ThermalTrace, entitled “Smart packaging for continuous temperature monitoring of liquid beverage” supported by Agência Nacional de Inovaçao (ANI), candidate to the System of Incentives for Research and Technological Development, co-financed by the European Regional Development Fund (ERDF). POCI 01-0247-FEDER-047094.info:eu-repo/semantics/publishedVersio

    Comparative study of the whisky aroma profile based on headspace solid phase microextraction using different fibre coatings

    Get PDF
    A dynamic headspace solid-phase microextraction (HS-SPME) and gas chromatography coupled to ion trap mass spectrometry (GC–ITMS) method was developed and applied for the qualitative determination of the volatile compounds present in commercial whisky samples which alcoholic content was previously adjusted to 13% (v/v). Headspace SPME experimental conditions, such as fibre coating, extraction temperature and extraction time, were optimized in order to improve the extraction process. Five different SPME fibres were used in this study, namely, poly(dimethylsiloxane)(PDMS),poly(acrylate)(PA),Carboxen-poly(dimethylsiloxane)(CAR/PDMS),Carbowax-divinylbenzene(CW/DVB)and Carboxen-poly(dimethylsiloxane)-divinylbenzene (CAR/PDMS/DVB). The best results were obtained using a 75 m CAR/PDMS fibre during headspace extraction at 40◦C with stirring at 750rpm for 60min, after saturating the samples with salt. The optimised methodology was then appliedtoinvestigatethevolatilecompositionprofileofthreeScotchwhiskysamples—BlackLabel,BallantinesandHighlandClan.Approximately seventy volatile compounds were identified in the these samples, pertaining at several chemical groups, mainly fatty acids ethyl esters, higher alcohols, fatty acids, carbonyl compounds, monoterpenols, C13 norisoprenoids and some volatile phenols. The ethyl esters form an essential group of aroma components in whisky, to which they confer a pleasant aroma, with “fruity” odours. Qualitatively, the isoamyl acetate, with “banana” aroma,wasthemostinteresting.Quantitatively,significantcomponentsareethylestersofcaprilic,capricandlauricacids.Thehighestconcentration of fatty acids, were observed for caprilic and capric acids. From the higher alcohols the fusel oils (3-methylbutan-1-ol and 2.phenyletanol) are the most important ones
    corecore