15 research outputs found
Possibilistic networks parameter learning: Preliminary empirical comparison
International audienceLike Bayesian networks, possibilistic ones compactly encode joint uncertainty representations over a set of variables. Learning possibilistic networks from data in general and from imperfect or scarce data in particular, has not received enough attention. Indeed, only few works deal with learning the structure and the parameters of a possibilistic network from a dataset. This paper provides a preliminary comparative empirical evaluation of two approaches for learning the parameters of a possibilistic network from empirical data. The first method is a possibilistic approach while the second one first learns imprecise probability measures then transforms them into possibility distributions by means of probability-possibility transformations. The comparative evaluation focuses on learning belief networks on datasets with missing data and scarce datasets
Effect of dust on the operation of photovoltaic solar panels installed in the Hodna region - Experimental study
In this work, an experimental study of the effect of dust on the operation of photovoltaic solar panels was conducted in the Hodna region. For this, a monocrystalline type of solar panel was tested with a power of 100W. A quantity of dust was scattered for the first tests during the month of March 2022, then the voltage and current were measured. The second tests were conducted under outdoor M’sila conditions for two months. The results obtained show that the accumulation of dust on the surface of the panels reduces the passage of solar radiation on the one hand, and leads to a rise in the temperature of the panels on the other hand, which reduces the energy produced by the photovoltaic system. Therefore, periodic cleaning of photovoltaic solar panels is necessary
Dimensionnement et gestion d'un système hybride d'energie renouvelable pour l'alimentation d'un data center
Information and communication technologies haverecently become a major sector in energy consumption,particularly with the advent of large platforms on the Internet. These platforms use data centers, which concentrate a very large number of machines processing information and providing services, causing a high energy consumption. The use of renewable energy sources (RES)on-site is then a promising way to reduce their ecological impact. However, some renewable energies such as solar and wind energy are intermittent and uncertain,being related to weather conditions. Since a data center must maintain a certain quality of service, using these sources effectively requires the usage of storage devices.This thesis explores an efficient sizing and management methods for a hybrid renewable energy infrastructure composed of wind turbines, photovoltaic panels, batteries and a hydrogen system..A first contribution addresses the problem of sizing the electrical plateform in order to meet the data center demand. A sizing tool is proposed, taking several metrics into account and providing three different system configurations as solutions. The user therefore chooses an appropriate configuration, according to his global economic plan of his H2 ecosystem. A second contribution studies the problem of energy management using amixed integer linear programming approach. An optimal management tool is therefore provided to find various source schedules according to different user’s objectives.The obtained solutions are discussed with several metrics considering different time horizon in order to find the beststorage management to meet the data center requests.Finally, a third contribution aims to forecast the weather data to obtain a preciser sizing of the sources using SARIMA model in order to reduce forecasts errors.Le secteur du numérique est récemment devenu un secteur majeur de la consommation d’électricité dans le monde, notamment avec l’avènement des data centers qui concentrent un très grand nombre de machines traitant des informations et fournissant des services. L’utilisation de sources d’énergie renouvelables sur site est un moyen prometteur de réduire l’impact écologique des data centers. Cependant, certaines énergies renouvelables comme les énergies solaire et éolienne sont intermittentes, étant liées aux conditions météorologiques. Étant donné qu’un centre de données doit maintenir une certaine qualité de service, l’utilisation efficace de ces sources nécessite l’utilisation de stockages. Cette thèse explore à la fois une méthode dimensionnement et une méthode de gestion optimale d’une infrastructure hybride d’énergie renouvelable, composée de panneaux photovoltaïques, d’éoliennes, de batteries et de système de stockage hydrogène.Une première contribution aborde le problème du dimensionnement de cette infrastructure électrique afin de répondre à la demande du data center. Un outil de dimensionnement est proposé, prenant en compte plusieurs métriques et fournissant trois configurations différentes. L’utilisateur choisit donc la configuration approprié, en fonction de son plan économique global de son écosystème H2. Une deuxième contribution étudie le problème de la gestion de l’énergie par programmation linéaire en nombres entiers. Un outil de gestion optimal est fourni pour trouver différents engagements optimaux des sources en fonction des objectifs de l’utilisateur. Les solutions obtenues sont ensuite discutées avec plusieurs métriques et avec différents horizons temporelles afin de trouver la meilleure solution pour répondre à la demande du data center. Enfin, une troisième contribution vise à prévoir évolution temporelle de l’ensoleillement et de la vitesse du vent à gros grain pour obtenir un dimensionnement plus précis à l’aide du modèle SARIMA
Apprentissage de modèles graphiques possibilistes à partir de données
This work fits within the framework of learning possibilistic networks, the possibilistic counterpart of Bayesian networks, which representan interesting combination between possibility theory and graphical models. This thesis presents two major contributions. The first oneconsists on proposing a validation strategy for possibilistic networks learning algorithms. This strategy proposes a sampling process togenerate imprecise datasets from theses models and two new evaluation measures. Our second contribution consists on proposing a global approach to learn the structure and the parameters of possibilistic networks. We propose a possibilistic likelihood function to learn possibilistic networks parameters and to define a new score function used to learn the structure of these models. A detailed experimental study showing the feasibility and the efficiency of the proposed methods has been also proposed.Ce travail s’intègre dans le cadre de l’apprentissage automatiquedes réseaux possibilistes, la contrepartie possibiliste des réseauxbayésiens qui représentent une combinaison intéressante entre lathéorie des possibilités et les modèles graphiques. Cette thèseprésente deux contributions majeures. La première contributionconsiste à proposer une stratégie de validation pour les algorithmesd’apprentissage des réseaux possibilistes. Cette stratégie proposeun processus d’échantillonnage permettant de générer desensembles de données imprécises à partir de ces modèles et deuxnouvelles mesures d’évaluation. Notre deuxième contributionconsiste à proposer une approche globale pour l’apprentissage desparamètres et de la structure des réseaux possibilistes. Nousproposons une fonction de vraisemblance possibiliste pourapprendre les paramètres les réseaux possibilistes et définir unenouvelle fonction de score pour apprendre la structure de cesmodèles. Une étude expérimentale détaillée montrant la faisabilitéet l’efficacité des méthodes proposées a été aussi proposée
Evaluating product-based possibilistic networks learning algorithms
International audienc
Possibilistic MDL: a new possibilistic likelihood based score function for imprecise data
International audienc
Learning possibilistic networks from data: a survey.
International audienc
Learning possibilistic networks from data: a survey.
International audiencePossibilistic networks are important tools for modelling and reasoning, especially in the presence of imprecise and/or uncertain information. These graphical models have been successfully used in several real applications. Since their construction by experts is complex and time consuming, several researchers have tried to learn them from data. In this paper, we try to present and discuss relevant state-of-the-art works related to learning possibilis-tic networks structure from data. In fact, we give an overview of methods that have already been proposed in this context and limitations of each one of them towards recent researches developed in possibility theory framework. We also present two learning possibilistic networks parameters methods