206 research outputs found

    Probability Distributions and Hilbert Spaces: Quantum and Classical Systems

    Get PDF
    We use the fact that some linear Hamiltonian systems can be considered as ``finite level'' quantum systems, and the description of quantum mechanics in terms of probabilities, to associate probability distributions with this particular class of linear Hamiltonian systems.Comment: LATEX,13pages,accepted by Physica Scripta (1999

    Radon transform on the cylinder and tomography of a particle on the circle

    Full text link
    The tomographic probability distribution on the phase space (cylinder) related to a circle or an interval is introduced. The explicit relations of the tomographic probability densities and the probability densities on the phase space for the particle motion on a torus are obtained and the relation of the suggested map to the Radon transform on the plane is elucidated. The generalization to the case of a multidimensional torus is elaborated and the geometrical meaning of the tomographic probability densities as marginal distributions on the helix discussed.Comment: 9 pages, 3 figure

    Towards a definition of quantum integrability

    Full text link
    We briefly review the most relevant aspects of complete integrability for classical systems and identify those aspects which should be present in a definition of quantum integrability. We show that a naive extension of classical concepts to the quantum framework would not work because all infinite dimensional Hilbert spaces are unitarily isomorphic and, as a consequence, it would not be easy to define degrees of freedom. We argue that a geometrical formulation of quantum mechanics might provide a way out.Comment: 37 pages, AmsLatex, 1 figur

    Classical Tensors and Quantum Entanglement II: Mixed States

    Full text link
    Invariant operator-valued tensor fields on Lie groups are considered. These define classical tensor fields on Lie groups by evaluating them on a quantum state. This particular construction, applied on the local unitary group U(n)xU(n), may establish a method for the identification of entanglement monotone candidates by deriving invariant functions from tensors being by construction invariant under local unitary transformations. In particular, for n=2, we recover the purity and a concurrence related function (Wootters 1998) as a sum of inner products of symmetric and anti-symmetric parts of the considered tensor fields. Moreover, we identify a distinguished entanglement monotone candidate by using a non-linear realization of the Lie algebra of SU(2)xSU(2). The functional dependence between the latter quantity and the concurrence is illustrated for a subclass of mixed states parametrized by two variables.Comment: 23 pages, 4 figure

    Trapped Ions in Laser Fields: a Benchmark for Deformed-Quantum Oscillators

    Get PDF
    Some properties of the non--linear coherent states (NCS), recognized by Vogel and de Matos Filho as dark states of a trapped ion, are extended to NCS on a circle, for which the Wigner functions are presented. These states are obtained by applying a suitable displacement operator Dh(α)D_{h}(\alpha) to the vacuum state. The unity resolutions in terms of the projectors ∣α,h><α,h∣| \alpha, h> < \alpha, h| . Dh(α)D_{h}(\alpha) is also used for introducing the probability distribution funtion ρA,h(z)\rho_{A,h}(z) while the existence of a measure is exploited for extending the P-representation to these states. The weight of the n-th Fock state of the NCS relative to a trapped ion with Lamb-Dicke parameter η,\eta , oscillates so wildly as nn grows up to infinity that the normalized NCS fill the open circle η−1\eta ^{-1} in the complex α\alpha -plane. In addition this prevents the existence of a measure including normalizable states only. This difficulty is overcome by introducing a family of deformations which are rational functions of n, each of them admitting a measure. By increasing the degree of these rational approximations the deformation of a trapped ion can be approximated with any degree of accuracy and the formalism of the P-representation can be applied
    • 

    corecore