145 research outputs found

    Cancer chemotherapy: targeting folic acid synthesis

    Get PDF
    Antifolates are structural analogs of folates, essential one-carbon donors in the synthesis of DNA in mammalian cells. Antifolates are inhibitors of key enzymes in folate metabolism, namely dihydrofolate reductase, β-glycinamide ribonucleotide transformylase, 5′-amino-4′-imidazolecarboxamide ribonucleotide transformylase, and thymidylate synthetase. Methotrexate is one of the earliest anticancer drugs and is extensively used in lymphoma, acute lymphoblastic leukemia, and osteosarcoma, among others. Pemetrexed has been approved in combination with cisplatin as first-line treatment for advanced non-squamous-cell lung cancer, as a single agent for relapsed non-small-cell lung cancer after platinum-containing chemotherapy, and in combination with cisplatin for the treatment of pleural mesothelioma. Raltitrexed is approved in many countries (except in the United States) for advanced colorectal cancer, but its utilization is mainly limited to patients intolerant to 5-fluorouracil. Pralatrexate has recently been approved in the United States for relapsed or refractory peripheral T-cell lymphoma. This article gives an overview of the cellular mechanism, pharmacology, and clinical use of classical and newer antifolates and discusses some of the main resistance mechanisms to antifolate drugs

    24h-gene variation effect of combined bevacizumab/erlotinib in advanced non-squamous non-small cell lung cancer using exon array blood profiling

    Get PDF
    Abstract Background The SAKK 19/05 trial investigated the safety and efficacy of the combined targeted therapy bevacizumab and erlotinib (BE) in unselected patients with advanced non-squamous non-small cell lung cancer (NSCLC). Although activating EGFR mutations were the strongest predictors of the response to BE, some patients not harboring driver mutations could benefit from the combined therapy. The identification of predictive biomarkers before or short after initiation of therapy is therefore paramount for proper patient selection, especially among EGFR wild-types. The first aim of this study was to investigate the early change in blood gene expression in unselected patients with advanced non-squamous NSCLC treated by BE. The second aim was to assess the predictive value of blood gene expression levels at baseline and 24h after BE therapy. Methods Blood samples from 43 advanced non-squamous NSCLC patients taken at baseline and 24h after initiation of therapy were profiled using Affymetrix’ exon arrays. The 24h gene dysregulation was investigated in the light of gene functional annotations using gene set enrichment analysis. The predictive value of blood gene expression levels was assessed and validated using an independent dataset. Results Significant gene dysregulations associated with the 24h-effect of BE were detected from blood-based whole-genome profiling. BE had a direct effect on “Pathways in cancer”, by significantly down-regulating genes involved in cytokine–cytokine receptor interaction, MAPK signaling pathway and mTOR signaling pathway. These pathways contribute to phenomena of evasion of apoptosis, proliferation and sustained angiogenesis. Other signaling pathways specifically reflecting the mechanisms of action of erlotinib and the anti-angiogenesis effect of bevacizumab were activated. The magnitude of change of the most dysregulated genes at 24h did not have a predictive value regarding the patients’ response to BE. However, predictive markers were identified from the gene expression levels at 24h regarding time to progression under BE. Conclusions The 24h-effect of the combined targeted therapy BE could be accurately monitored in advanced non-squamous NSCLC blood samples using whole-genome exon arrays. Putative predictive markers at 24h could reflect patients’ response to BE after adjusting for their mutational status. Trial registration ClinicalTrials.gov: NCT0035454

    Comparative evaluation of the My5-FU™ immunoassay and LC-MS/MS in monitoring the 5-fluorouracil plasma levels in cancer patients

    Get PDF
    Background: Chemotherapies of solid tumors commonly include 5-fluorouracil (5-FU). With standard doses of 5-FU, substantial inter-patient variability has been observed in exposure levels and treatment response. Recently, improved outcomes in colorectal cancer patients due to pharmacokinetically guided 5-FU dosing were reported. We aimed at establishing a rapid and sensitive method for monitoring 5-FU plasma levels in cancer patients in our routine clinical practice. Methods: Performance of the Saladax My5-FU™ immunoassay was evaluated on the Roche Cobas® Integra 800 analyzer. Subsequently, 5-FU concentrations of 247 clinical plasma samples obtained with this assay were compared to the results obtained by liquid chromatography-tandem mass spectrometry (LC-MS/MS) and other commonly used clinical analyzers (Olympus AU400, Roche Cobas c6000, and Thermo Fisher CDx90). Results: The My-FU assay was successfully validated on the Cobas Integra 800 analyzer in terms of linearity, precision, accuracy, recovery, interference, sample carryover, and dilution integrity. Method comparison between the Cobas Integra 800 and LC-MS/MS revealed a proportional bias of 7% towards higher values measured with the My5-FU assay. However, when the Cobas Integra 800 was compared to three other clinical analyzers in addition to LC-MS/MS including 50 samples representing the typical clinical range of 5-FU plasma concentrations, only a small proportional bias (≤1.6%) and a constant bias below the limit of detection was observed. Conclusions: The My5-FU assay demonstrated robust and highly comparable performance on different analyzers. Therefore, the assay is suitable for monitoring 5-FU plasma levels in routine clinical practice and may contribute to improved efficacy and safety of commonly used 5-FU-based chemotherapie

    Non-pharmaceutical interventions to optimize cancer immunotherapy

    Full text link
    The traditional picture of cancer patients as weak individuals requiring maximum rest and protection is beginning to dissolve. Too much focus on the medical side and one’s own vulnerability and mortality might be counterproductive and not doing justice to the complexity of human nature. Unlike cytotoxic and lympho-depleting treatments, immune-engaging therapies strengthen the immune system and are typically less harmful for patients. Thus, cancer patients receiving checkpoint inhibitors are not viewed as being vulnerable per se, at least not in immunological and physical terms. This perspective article advocates a holistic approach to cancer immunotherapy, with an empowered patient in the center, focusing on personal resources and receiving domain-specific support from healthcare professionals. It summarizes recent evidence on non-pharmaceutical interventions to enhance the efficacy of immune checkpoint blockade and improve quality of life. These interventions target behavioral factors such as diet, physical activity, stress management, circadian timing of checkpoint inhibitor infusion, and waiving unnecessary co-medication curtailing immunotherapy efficacy. Non-pharmaceutical interventions are universally accessible, broadly applicable, instantly actionable, scalable, and economically sustainable, creating value for all stakeholders involved. Most importantly, this holistic framework re-emphasizes the patient as a whole and harnesses the full potential of anticancer immunity and checkpoint blockade, potentially leading to survival benefits. Digital therapeutics are proposed to accompany the patients on their mission toward change in lifestyle-related behaviors for creating optimal conditions for treatment efficacy and personal growth

    Lenalidomide in cancer cachexia: a randomized trial of an anticancer drug applied for anti-cachexia

    Full text link
    Background Cancer cachexia (CC) impacts quality of life, physical function, anticancer treatment response, and survival. Inflammation is a prominent pathomechanism of CC. This small-scale study sets out to investigate the immunomodulatory drug lenalidomide in inflammatory CC in a randomized, double-blind, placebo-controlled trial. Methods Patients with advanced solid malignancies, documented weight loss, no or unchanged anticancer treatment, and C-reactive protein > 30 mg/L were included. In a 2:2:1 randomization, patients received either lenalidomide 25 mg once daily or C-reactive protein-guided dose, starting with 5 mg lenalidomide once daily or placebo once a day for 8 weeks. Dose adaption and safety were assessed twice a week. Treatment response was defined as an increase of lean body mass of more than 2% in a lower lumbar computed tomography and an increase in dynamometer-assessed handgrip strength of 4 kg. Secondary endpoints included adverse events, C-reactive protein response, nutritional intake, and symptoms. Results Of 24 eligible patients, 16 were included (25% female). At baseline, the mean age was 67 (range 51–88) years, and mean body weight was 64.7 kg (range 39.8–87.2 kg). Five were diagnosed with mesothelioma, two with non-small-cell lung cancer, two with renal cell carcinoma, two with neuroendocrine tumours, and five with other malignancies. Mean survival was 43 days. Eleven adverse events (four of which were severe) were recorded with a probable link to study participation. Nine patients completed the study. No participant showed a treatment response. C-reactive protein-guided dosing did not result in lower doses of lenalidomide. Lean body mass decreased less in the treatment groups. For the lenalidomide and placebo groups respectively, handgrip strength decreased by 2.3 vs. 5.5 kg, nutritional intake decreased by 249 vs. 32 kcal/day, and C-reactive protein increased by 35 mg/dL vs. decreased by 17 mg/dL. The study was closed prematurely due to slow accrual and the need for concurrent anticancer treatments. Conclusions No treatment response on muscle mass and muscle strength was observed with lenalidomide. Because of several limiting factors, including low recruitment caused in part by an ambitious study design and concomitant anticancer treatment, this study did not generate adequate data to draw reliable conclusions

    Phase 1 dose escalation study of the allosteric AKT inhibitor BAY 1125976 in advanced solid cancer-Lack of association between activating AKT mutation and AKT inhibition-derived efficacy

    Get PDF
    This open-label, phase I first-in-human study (NCT01915576) of BAY 1125976, a highly specific and potent allosteric inhibitor of AKT1/2, aimed to evaluate the safety, pharmacokinetics, and maximum tolerated dose of BAY 1125976 in patients with advanced solid tumors. Oral dose escalation was investigated with a continuous once daily (QD) treatment (21 days/cycle) and a twice daily (BID) schedule. A dose expansion in 28 patients with hormone receptor-positive metastatic breast cancer, including nine patients harboring th

    Phase 1 first-in-human dose-escalation study of ANV419 in patients with relapsed/refractory advanced solid tumors

    Get PDF
    Solid tumorsTumors sòlids avançatsTumores sólidos avanzadosBackground ANV419 is a stable antibody–cytokine fusion protein consisting of interleukin-2 (IL-2) fused to an anti-IL-2 monoclonal antibody that sterically hinders binding of IL-2 to the α subunit of its receptor but has selective affinity for the receptor βγ subunits. Thus, ANV419 preferentially stimulates CD8+ effector T cells and natural killer cells which are associated with tumor killing, while minimizing the activation of immunosuppressive regulatory T cells. Methods ANV419-001 is an open-label, multicenter, phase 1 study to evaluate the safety, tolerability, maximum tolerated dose (MTD) and recommended phase 2 dose (RP2D) of ANV419. Secondary objectives were to characterize the pharmacokinetics, pharmacodynamics and tumor response. Adult patients with advanced solid tumors and disease progression after ≥1 previous line of systemic therapy were enrolled. ANV419 was administered by intravenous infusion once every 2 weeks, with a planned treatment duration of 12 months. The dose escalation part of the study explored doses 3, 6 and 12 µg/kg as single patient cohorts followed by 24–364 µg/kg in a 3+3 design. Interim results are reported here (data cut-off: March 22, 2023). Results Forty patients were enrolled and received at least one dose of ANV419. The MTD and RP2D were determined to be 243 µg/kg. The most common ANV419-related treatment-emergent adverse events were Grade 1 and 2 fever (31 (77.5%)), chills (23 (57.5%), vomiting (14 (35.0%)), cytokine release syndrome and nausea (12 (30.0%) each). Transient and self-limiting lymphopenia due to lymphocyte redistribution was observed in all patients. In the RP2D cohort, Grade ≥3 thrombocytopenia and fever were reported by one patient (12.5%) each. All events were manageable with standard supportive care. At doses of 243 µg/kg (RP2D/MTD), the estimated T1/2 was approximately 12 hours. At ANV419 doses ≥108 µg/kg, 64% of patients had a best response of at least SD (15 SD and 1 confirmed PR). Conclusions ANV419 at doses up to 243 µg/kg (the RP2D) was well tolerated and showed signs of antitumor activity in a heavily pretreated patient population with advanced solid tumors. Trial registration number NCT04855929.This study was funded by Anaveon AG, Basel, Switzerland

    Integrated Data Analysis of Six Clinical Studies Points Toward Model-Informed Precision Dosing of Tamoxifen

    Get PDF
    Introduction: At tamoxifen standard dosing, ∼20% of breast cancer patients do not reach proposed target endoxifen concentrations >5.97 ng/mL. Thus, better understanding the large interindividual variability in tamoxifen pharmacokinetics (PK) is crucial. By applying non-linear mixed-effects (NLME) modeling to a pooled ‘real-world’ clinical PK database, we aimed to (i) dissect several levels of variability and identify factors predictive for endoxifen exposure and (ii) assess different tamoxifen dosing strategies for their potential to increase the number of patients reaching target endoxifen concentrations. Methods: Tamoxifen and endoxifen concentrations with genetic and demographic data of 468 breast cancer patients from six reported studies were used to develop a NLME parent-metabolite PK model. Different levels of variability on model parameters or measurements were investigated and the impact of covariates thereupon explored. The model was subsequently applied in a simulation-based comparison of three dosing strategies with increasing degree of dose individualization for a large virtual breast cancer population. Interindividual variability of endoxifen concentrations and the fraction of patients at risk for not reaching target concentrations were assessed for each dosing strategy. Results and Conclusions: The integrated NLME model enabled to differentiate and quantify four levels of variability (interstudy, interindividual, interoccasion, and intraindividual). Strong influential factors, i.e., CYP2D6 activity score, drug–drug interactions with CYP3A and CYP2D6 inducers/inhibitors and age, were reliably identified, reducing interoccasion variability to <20% CV. Yet, unexplained interindividual variability in endoxifen formation remained large (47.2% CV). Hence, therapeutic drug monitoring seems promising for achieving endoxifen target concentrations. Three tamoxifen dosing strategies [standard dosing (20 mg QD), CYP2D6-guided dosing (20, 40, and 60 mg QD) and individual model-informed precision dosing (MIPD)] using three therapeutic drug monitoring samples (5–120 mg QD) were compared, leveraging the model. The proportion of patients at risk for not reaching target concentrations was 22.2% in standard dosing, 16.0% in CYP2D6-guided dosing and 7.19% in MIPD. While in CYP2D6-guided- and standard dosing interindividual variability in endoxifen concentrations was high (64.0% CV and 68.1% CV, respectively), it was considerably reduced in MIPD (24.0% CV). Hence, MIPD demonstrated to be the most promising strategy for achieving target endoxifen concentrations

    A phase II, open-label study of gefitinib (IRESSA) in patients with locally advanced, metastatic, or relapsed renal-cell carcinoma

    Get PDF
    Epidermal growth factor receptor (EGFR) expression has been associated with clinical outcome in some studies of renal-cell carcinoma (RCC). We investigated the efficacy and safety of gefitinib (IRESSA), an EGFR tyrosine kinase inhibitor, in RCC patients. This phase II trial recruited 28 patients with advanced, metastatic, or relapsed RCC. Patients received oral gefitinib 500mg/day. Objective responses (ORs) were assessed every 2months according to RECIST. Baseline tumor biopsies were analyzed immunohistochemically for EGFR expression. At trial closure (March 2003), no ORs were seen but 14 patients (53.8%) had stable disease. At extended analysis (August 2004), median time to progression was 110days (95% confidence interval [CI]: 55, 117); median overall survival was 303days (95% CI 180, 444). Gefitinib was generally well tolerated. Skin rash and diarrhea were the most common drug-related adverse events (AEs) [54 and 39% of patients, respectively] and the most common drug-related grade 3/4 AEs (both 11%). The majority of tumor biopsies (91%) had ≥70% of tumor cells expressing membrane EGFR. Despite the lack of ORs in this study, disease control was observed in 53.8% of patients. Gefitinib was generally well tolerated and no unexpected drug-related AEs were observe

    A prognostic baseline blood biomarker and tumor growth kinetics integrated model in paclitaxel/platinum treated advanced non-small cell lung cancer patients

    Get PDF
    Paclitaxel/platinum chemotherapy, the backbone of standard first-line treatment of advanced non-small cell lung cancer (NSCLC), exhibits high interpatient variability in treatment response and high toxicity burden. Baseline blood biomarker concentrations and tumor size (sum of diameters) at week 8 relative to baseline (RS8) are widely investigated prognostic factors. However, joint analysis of data on demographic/clinical characteristics, blood biomarker levels, and chemotherapy exposure-driven early tumor response for improved prediction of overall survival (OS) is clinically not established. We developed a Weibull time-to-event model to predict OS, leveraging data from 365 patients receiving paclitaxel/platinum combination chemotherapy once every three weeks for ≤six cycles. A developed tumor growth inhibition model, combining linear tumor growth and first-order paclitaxel area under the concentration-time curve-induced tumor decay, was used to derive individual RS8. The median model-derived RS8 in all patients was a 20.0% tumor size reduction (range from −78% to +15%). Whereas baseline carcinoembryonic antigen, cytokeratin fragments, and thyroid stimulating hormone levels were not significantly associated with OS in a subset of 221 patients, and lactate dehydrogenase, interleukin-6 and neutrophil-to-lymphocyte ratio levels were significant only in univariate analyses (p value < 0.05); C-reactive protein (CRP) in combination with RS8 most significantly affected OS (p value < 0.01). Compared to the median population OS of 11.3 months, OS was 128% longer at the 5th percentile levels of both covariates and 60% shorter at their 95th percentiles levels. The combined paclitaxel exposure-driven RS8 and baseline blood CRP concentrations enables early individual prognostic predictions for different paclitaxel dosing regimens, forming the basis for treatment decision and optimizing paclitaxel/platinum-based advanced NSCLC chemotherapy
    • …
    corecore