59 research outputs found

    Oxygen provision to severely ill COVID-19 patients at the peak of the 2020 pandemic in a Swedish district hospital.

    Get PDF
    Oxygen is a low-cost and life-saving therapy for patients with COVID-19. Yet, it is a limited resource in many hospitals in low income countries and in the 2020 pandemic even hospitals in richer countries reported oxygen shortages. An accurate understanding of oxygen requirements is needed for capacity planning. The World Health Organization estimates the average flow-rate of oxygen to severe COVID-19-patients to be 10 l/min. However, there is a lack of empirical data about the oxygen provision to patients. This study aimed to estimate the oxygen provision to COVID-19 patients with severe disease in a Swedish district hospital. A retrospective, medical records-based cohort study was conducted in March to May 2020 in a Swedish district hospital. All adult patients with severe COVID-19 -those who received oxygen in the ward and had no ICU-admission during their hospital stay-were included. Data were collected on the oxygen flow-rates provided to the patients throughout their hospital stay, and summary measures of oxygen provision calculated. One-hundred and twenty-six patients were included, median age was 70 years and 43% were female. On admission, 27% had a peripheral oxygen saturation of ≤91% and 54% had a respiratory rate of ≥25/min. The mean oxygen flow-rate to patients while receiving oxygen therapy was 3.0 l/min (SD 2.9) and the mean total volume of oxygen provided per patient admission was 16,000 l (SD 23,000). In conclusion, the provision of oxygen to severely ill COVID-19-patients was lower than previously estimated. Further research is required before global estimates are adjusted

    Modulating Organ Dysfunction in Experimental Septic Shock : Effects of Aminoglycosides, Antiendotoxin Measures and Endotoxin Tolerance

    No full text
    Sepsis is a common diagnose in the intensive care population, burdened with a high mortality. The systemic inflammatory reaction underlying the development of septic organ dysfunction can be modeled using Gram-negative bacterial lipopolysaccharide, endotoxin. This thesis used a porcine endotoxemic experimental sepsis model to address clinical questions difficult to answer in clinical trials; furthermore a model of secondary sepsis was developed. No additional effect on the development of renal dysfunction by tobramycin was found, indicating that a single dose of tobramycin does not further compromise renal function in inflammatory-induced acute kidney injury. Antiendotoxin treatment had no measurable effect on TNF-α-mediated toxicity once the inflammatory cascade was activated. There was an effect on the leukocyte response that was associated with improvements in respiratory function and microcirculation, making it impossible to rule out fully the beneficial effect of this strategy. However, the effects were limited in relation to the magnitude of the endotoxin concentration reduction and the very early application of the antiendotoxin measure. The lungs stood out compared to the other organ systems as having a threshold endotoxin dose for the protective effect of endotoxin tolerance. As to the development of circulatory and renal dysfunction, tolerance to endotoxin was evident regardless of the endotoxin pre-exposure and challenge dose. There was a temporal variation of endotoxin tolerance that did not follow changes in plasma TNF-α concentrations and maximal tolerance was seen very early in the course. More pronounced endotoxin tolerance at the time of maximum tolerance was associated with a more marked hyperdynamic circulation, reduced oxygen consumption and thrombocytopenia eighteen hours later. It might be of interest to use the experimental model of long-term endotoxemia followed by a second hit, which has been designed to resemble an intensive care setting, for the study of treatment effects of immunomodulating therapies in secondary sepsis.Paper 3, previous title as submitted: "Compartmentalization of organ endotoxin tolerance in a porcine model of secondary sepsis

    Mesenchymal stromal cells as treatment for acute respiratory distress syndrome. Case Reports following hematopoietic cell transplantation and a review

    No full text
    Acute respiratory distress syndrome (ARDS) is a life-threatening lung disease. It may occur during the pancytopenia phase following allogeneic hematopoietic cell transplantation (HCT). ARDS is rare following HCT. Mesenchymal stromal cells (MSCs) have strong anti-inflammatory effect and first home to the lung following intravenous infusion. MSCs are safe to infuse and have almost no side effects. During the Covid-19 pandemic many patients died from ARDS. Subsequently MSCs were evaluated as a therapy for Covid-19 induced ARDS. We report three patients, who were treated with MSCs for ARDS following HCT. Two were treated with MSCs derived from the bone marrow (BM). The third patient was treated with MSCs obtained from the placenta, so-called decidua stromal cells (DSCs). In the first patient, the pulmonary infiltrates cleared after infusion of BM-MSCs, but he died from multiorgan failure. The second patient treated with BM-MSCs died of aspergillus infection. The patient treated with DSCs had a dramatic response and survived. He is alive after 7 years with a Karnofsky score of 100%. We also reviewed experimental and clinical studies using MSCs or DSCs for ARDS. Several positive reports are using MSCs for sepsis and ARDS in experimental animals. In man, two prospective randomized placebo-controlled studies used adipose and BM-MSCs, respectively. No difference in outcome was seen compared to placebo. Some pilot studies used MSCs for Covid-19 ARDS. Positive results were achieved using umbilical cord and DSCs however, optimal source of MSCs remains to be elucidated using randomized trials

    The Patient's Gender Influencing the Accuracy of Diagnosis and Proposed Sepsis Treatment in Constructed Cases

    No full text
    Background. Male sex is an independent risk factor for sepsis development. In addition to immunological gender differences, women less often receive sepsis treatment once diagnosed. Gender differences have also been described in other medical conditions, such as acute coronary syndrome.Aim. To study whether the gender of patients influenced physicians' tendency to suspect sepsis and propose correct initial sepsis treatment in constructed cases.Method. Four cases were constructed to fulfil the sepsis-3 criteria as well as raise clinical suspicions of other common medical differential diagnoses. Two of the cases were drafted in two versions, only differing in the gender of the patient. The two versions were randomly distributed to all clinical physicians in a medical region in Sweden. The responding physicians were asked to state the three most important diagnoses and the three most important initial treatments for each case. If sepsis were among the stated diagnoses together with fluids and antibiotics, the case was considered as correctly identified and initially treated sepsis.Results. 120 hospital physicians answered the cases. In the case the patient was a female, the respondents correctly identified and treated sepsis significantly more often than if the patient was of the male sex (Case 1: 12/58 vs 2/62,p<0.01and Case 2: 25/62 vs 13/58,p<0.05).Conclusion. A low proportion of Swedish physicians identified and proposed treatment for sepsis in four constructed cases. In the case the patient strongly mimicked other diagnoses common in the male sex, the male cases were less often correctly identified and treated for sepsis

    An experimental porcine model of invasive candidiasis

    No full text
    Abstract Background Invasive candidiasis (IC) is a severe and often fatal fungal infection that affects critically ill patients. The development of animal models that mimic human disease is essential for advancing our understanding of IC pathophysiology and testing experimental or novel treatments. We aimed to develop a large animal model of IC that could provide a much-needed addition to the widely used murine models. Results A total of 25 pigs (including one control), aged between 9 and 12 weeks, with a median weight of 25.1 kg (IQR 24.1–26.2), were used to develop the porcine IC model. We present the setup, the results of the experiments, and the justification for the changes made to the model. The experiments were conducted in an intensive care setting, using clinically relevant anaesthesia, monitoring and interventions. The final model used corticosteroids, repeated Candida inoculation, and continuous endotoxin. The model consistently demonstrated quantifiable growth of Candida in blood and organs. The registered physiological data supported the development of the sepsis-induced circulatory distress observed in IC patients in the ICU. Conclusions Our proposed porcine model of IC offers a potential new tool in the research of IC

    Endotoxin tolerance variation over 24 h during porcine endotoxemia : association to changes in circulation and organ dysfunction

    Get PDF
    Endotoxin tolerance (ET), defined as reduced inflammatory responsiveness to endotoxin challenge following a first encounter with endotoxin, is an extensively studied phenomenon. Although reduced mortality and morbidity in the presence of ET has been demonstrated in animal studies, little is known about the temporal development of ET. Further, in acute respiratory distress syndrome ET correlates to the severity of the disease, suggesting a complicated relation between ET and organ dysfunction. Eighteen pigs were subjected to intensive care and a continuous endotoxin infusion for 24 h with the aim to study the time course of early ET and to relate ET to outcome in organ dysfunction. Three animals served as non-endotoxemic controls. Blood samples for cytokine analyses were taken and physiological variables registered every third hour. Production of TNF-α, IL-6, and IL-10 before and after endotoxin stimulation ex vivo was measured. The difference between cytokine values after and before ex vivo LPS stimulation (Δ-values) was calculated for all time points. ΔTNF-α was employed as the principal marker of ET and lower ΔTNF-α values were interpreted as higher levels of ET. During endotoxin infusion, there was suppression of ex vivo productions of TNF-α and IL-6 but not of IL-10 in comparison with that at 0 h. The ex vivo TNF-α values followed another time concentration curve than those in vivo. ΔTNF-α was at the lowest already at 6 h, followed by an increase during the ensuing hours. ΔTNF-α at 6 h correlated positively to blood pressure and systemic vascular resistance and negatively to cardiac index at 24 h. In this study a temporal variation of ET was demonstrated that did not follow changes in plasma TNF-α concentrations. Maximal ET occurred early in the course and the higher the ET, the more hyperdynamic the circulation 18 h later

    Lung protective ventilation induces immunotolerance and nitric oxide metabolites in porcine experimental postoperative sepsis

    Get PDF
    Low tidal volume ventilation is beneficial in patients with severe pulmonary dysfunction and would, in theory, reduce postoperative complications if implemented during routine surgery. The study aimed to investigate whether low tidal volume ventilation and high positive end-expiratory pressure (PEEP) in a large animal model of postoperative sepsis would attenuate the systemic inflammatory response and organ dysfunction. Thirty healthy pigs were randomized to three groups: Group Prot-7h, i.e. protective ventilation for 7 h, was ventilated with a tidal volume of 6 mL x kg-1 for 7 h; group Prot-5h, i.e. protective ventilation for 5 h, was ventilated with a tidal volume of 10 mL x kg-1 for 2 h, after which the group was ventilated with a tidal volume of 6 mL x kg-1; and a control group that was ventilated with a tidal volume of 10 mL x kg-1 for 7 h. In groups Prot-7h and Prot-5h PEEP was 5 cmH2O for 2 h and 10 cmH2O for 5 h. In the control group PEEP was 5 cmH2O for the entire experiment. After surgery for 2 h, postoperative sepsis was simulated with an endotoxin infusion for 5 h. Low tidal volume ventilation combined with higher PEEP led to lower levels of interleukin 6 and 10 in plasma, higher PaO2/FiO2, better preserved functional residual capacity and lower plasma troponin I as compared with animals ventilated with a medium high tidal volume and lower PEEP. The beneficial effects of protective ventilation were seen despite greater reductions in cardiac index and oxygen delivery index. In the immediate postoperative phase low VT ventilation with higher PEEP was associated with reduced ex vivo plasma capacity to produce TNF-α upon endotoxin stimulation and higher nitrite levels in urine. These findings might represent mechanistic explanations for the attenuation of systemic inflammation and inflammatory-induced organ dysfunction

    Endotoxin tolerance variation over 24 h during porcine endotoxemia : association to changes in circulation and organ dysfunction

    No full text
    Endotoxin tolerance (ET), defined as reduced inflammatory responsiveness to endotoxin challenge following a first encounter with endotoxin, is an extensively studied phenomenon. Although reduced mortality and morbidity in the presence of ET has been demonstrated in animal studies, little is known about the temporal development of ET. Further, in acute respiratory distress syndrome ET correlates to the severity of the disease, suggesting a complicated relation between ET and organ dysfunction. Eighteen pigs were subjected to intensive care and a continuous endotoxin infusion for 24 h with the aim to study the time course of early ET and to relate ET to outcome in organ dysfunction. Three animals served as non-endotoxemic controls. Blood samples for cytokine analyses were taken and physiological variables registered every third hour. Production of TNF-α, IL-6, and IL-10 before and after endotoxin stimulation ex vivo was measured. The difference between cytokine values after and before ex vivo LPS stimulation (Δ-values) was calculated for all time points. ΔTNF-α was employed as the principal marker of ET and lower ΔTNF-α values were interpreted as higher levels of ET. During endotoxin infusion, there was suppression of ex vivo productions of TNF-α and IL-6 but not of IL-10 in comparison with that at 0 h. The ex vivo TNF-α values followed another time concentration curve than those in vivo. ΔTNF-α was at the lowest already at 6 h, followed by an increase during the ensuing hours. ΔTNF-α at 6 h correlated positively to blood pressure and systemic vascular resistance and negatively to cardiac index at 24 h. In this study a temporal variation of ET was demonstrated that did not follow changes in plasma TNF-α concentrations. Maximal ET occurred early in the course and the higher the ET, the more hyperdynamic the circulation 18 h later

    Effects of surgery and propofol-remifentanil total intravenous anesthesia on cerebrospinal fluid biomarkers of inflammation, Alzheimer's disease, and neuronal injury in humans : a cohort study

    Get PDF
    Background: Surgery and anesthesia have been linked to postoperative cognitive disturbance and increased risk of Alzheimer's disease. It is not clear by which mechanisms this increased risk for cognitive disease is mediated. Further, amyloid beta production has been suggested to depend on the sleep-wake cycle and neuronal activity. The aim of the present study was to examine if cerebrospinal fluid (CSF) concentrations of a number of biomarkers for Alzheimer's disease-related processes, including amyloid beta, neuronal injury, and inflammation, changed over time during intravenous anesthesia in surgical patients. Methods: We included patients scheduled for hysterectomy via laparotomy during general anesthesia with intravenous propofol and remifentanil. CSF samples were obtained before, during, and after surgery (5 h after induction) and tested for 27 biomarkers. Changes over time were tested with linear mixed effects models. Results: A total of 22 patients, all females, were included. The mean age was 50 years (+/- 9 SD). The mean duration of the anesthesia was 145 min (+/- 40 SD). Interleukin (IL)-6, IL-8, monocyte chemoattractant protein 1, and vascular endothelial growth factor A increased over time. IL-15 and IL-7 decreased slightly over time. Macrophage inflammatory protein 1 beta and placental growth factor also changed significantly. There were no significant effects on amyloid beta (A beta) or tau biomarkers. Conclusions: Surgery and general anesthesia with intravenous propofol and remifentanil induce, during and in the short term after the procedure, a neuroinflammatory response which is dominated by monocyte attractants, without biomarker signs of the effects on Alzheimer's disease pathology or neuronal injury
    corecore