211 research outputs found

    Human SHPRH suppresses genomic instability through proliferating cell nuclear antigen polyubiquitination

    Get PDF
    Differential modifications of proliferating cell nuclear antigen (PCNA) determine DNA repair pathways at stalled replication forks. In yeast, PCNA monoubiquitination by the ubiquitin ligase (E3) yRad18 promotes translesion synthesis (TLS), whereas the lysine-63ā€“linked polyubiquitination of PCNA by yRad5 (E3) promotes the error-free mode of bypass. The yRad5-dependent pathway is important to prevent genomic instability during replication, although its exact molecular mechanism is poorly understood. This mechanism has remained totally elusive in mammals because of the lack of apparent RAD5 homologues. We report that a putative tumor suppressor gene, SHPRH, is a human orthologue of yeast RAD5. SHPRH associates with PCNA, RAD18, and the ubiquitin-conjugating enzyme UBC13 (E2) and promotes methyl methanesulfonate (MMS)ā€“induced PCNA polyubiquitination. The reduction of SHPRH by stable short hairpin RNA increases sensitivity to MMS and enhances genomic instability. Therefore, the yRad5/SHPRH-dependent pathway is a conserved and fundamental DNA repair mechanism that protects the genome from genotoxic stress

    Synthetic Triterpenoid Induces 15-PGDH Expression and Suppresses Inflammation-Driven Colon Carcinogenesis

    Get PDF
    Colitis-associated colon cancer (CAC) develops as a result of inflammation-induced epithelial transformation, which occurs in response to inflammatory cytokine-dependent downregulation of 15-hydroxyprostaglandin dehydrogenase (15-PGDH) and subsequent suppression of prostaglandin metabolism. Agents that both enhance 15-PGDH expression and suppress cyclooxygenase-2 (COX-2) production may more effectively prevent CAC. Synthetic triterpenoids are a class of small molecules that suppress COX-2 as well as inflammatory cytokine signaling. Here, we found that administration of the synthetic triterpenoid 2-cyano-3,12-dioxooleana-1,9(11)-dien-C28-methyl ester (CDDO-Me) suppresses CAC in mice. In a spontaneous, inflammation-driven intestinal neoplasia model, deletion of Smad4 specifically in T cells led to progressive production of inflammatory cytokines, including TNF-Ī±, IFN-Ī³, iNOS, IL-6, IL-1Ī²; as well as activation of STAT1 and STAT3; along with suppression of 15-PGDH expression. Oral administration of CDDO-Me to mice with SMAD4-deficient T cells increased survival and suppressed intestinal epithelial neoplasia by decreasing production of inflammatory mediators and increasing expression of 15-PGDH. Induction of 15-PGDH by CDDO-Me was dose dependent in epithelial cells and was abrogated following treatment with TGF-Ī² signaling inhibitors in vitro. Furthermore, CDDO-Meā€“dependent 15-PGDH induction was not observed in Smad3ā€“/ā€“ mice. Similarly, CDDO-Me suppressed azoxymethane plus dextran sodium sulfateā€“induced carcinogenesis in wild-type animals, highlighting the potential of small molecules of the triterpenoid family as effective agents for the chemoprevention of CAC in humans

    Small Molecule Inhibitors of 15-PGDH Exploit a Physiologic Induced-Fit Closing System

    Get PDF
    15-prostaglandin dehydrogenase (15-PGDH) is a negative regulator of tissue stem cells that acts via enzymatic activity of oxidizing and degrading PGE2, and related eicosanoids, that support stem cells during tissue repair. Indeed, inhibiting 15-PGDH markedly accelerates tissue repair in multiple organs. Here we have used cryo-electron microscopy to solve the solution structure of native 15-PGDH and of 15-PGDH individually complexed with two distinct chemical inhibitors. These structures identify key 15-PGDH residues that mediate binding to both classes of inhibitors. Moreover, we identify a dynamic 15-PGDH lid domain that closes around the inhibitors, and that is likely fundamental to the physiologic 15-PGDH enzymatic mechanism. We furthermore identify two key residues, F185 and Y217, that act as hinges to regulate lid closing, and which both inhibitors exploit to capture the lid in the closed conformation, thus explaining their sub-nanomolar binding affinities. These findings provide the basis for further development of 15-PGDH targeted drugs as therapeutics for regenerative medicine

    Compositions and Methods of Modulating 15-PGDH Activity

    Get PDF
    Compounds and methods of modulating 15-PGDH activity, modulating tissue prostaglandin levels, treating disease, diseases disorders, or conditions in which it is desired to modulate 15-PGDH activity and/or prostaglandin levels include 15-PGDH inhibitors and 15-PGDH activators described herein

    Compositions and Methods of Modulating 15-PGDH Activity

    Get PDF
    Compounds and methods of modulating 15-PGDH activity, modulating tissue prostaglandin levels, treating disease, diseases disorders, or conditions in which it is desired to modulate 15-PGDH activity and/or prostaglandin levels include 15-PGDH inhibitors and 15-PGDH activators described herein

    Tissue-specific patterns of gene expression in the epithelium and stroma of normal colon in healthy individuals in an aspirin intervention trial

    Get PDF
    AbstractRegular aspirin use reduces colon adenoma and carcinoma incidence. UDP-glucuronosyltransferases (UGT) are involved in aspirin metabolism and clearance, and variant alleles in UGT1A6 have been shown to alter salicylic acid metabolism and risk of colon neoplasia. In a randomized, cross-over, placebo-controlled trial of 44 healthy men and women, homozygous for UGT1A6*1 or UGT1A6*2, we explored differences between global epithelial and stromal expression, using Affymetrix U133+2.0 microarrays and tested effects of 60-day aspirin supplementation (325mg/d) on epithelial and stromal gene expression and colon prostaglandin E2 (PGE2) levels. We conducted a comprehensive study of differential gene expression between normal human colonic epithelium and stroma from healthy individuals. Although no statistically significant differences in gene expression were observed in response to aspirin or UGT1A6 genotype, we have identified the genes uniquely and reproducibly expressed in each tissue type and have analyzed the biologic processes they represent. Here we describe in detail how the data, deposited in the Gene Expression Omnibus (GEO) ā€“ accession number GSE71571 ā€“ was generated including the basic analysis as contained in the manuscript published in BMC Medical Genetics with the PMID 25927723 (Thomas et al., 2015 [9])

    RNA Sequencing Identifies Transcriptionally Viable Gene Fusions in Esophageal Adenocarcinomas

    Get PDF
    Esophageal adenocarcinoma (EAC) is a deadly cancer with increasing incidence in the U.S., but mechanisms underlying pathogenesis are still mostly elusive. In addressing this question, we assessed gene-fusion landscapes by comprehensive RNA sequencing (RNAseq) of 55 pre-treatment EAC and 49 non-malignant biopsy tissues from patients undergoing endoscopy for Barrettā€™s esophagus. In this cohort, we identified 21 novel candidate EAC-associated fusions occurring in 3.33%-11.67% of EACs. Two candidate fusions were selected for validation by PCR and Sanger sequencing in an independent set of pre-treatment EAC (N=115) and non-malignant (N=183) biopsy tissues. In particular, we observed RPS6KB1ā€“VMP1 gene fusion as a recurrent event occurring in ~10% of EAC cases. Notably, EAC cases harboring RPS6KB1ā€“VMP1 fusions exhibited significantly poorer overall survival as compared to fusion-negative cases. Mechanistic investigations established that the RPS6KB1ā€“VMP1 transcript coded for a fusion protein which significantly enhanced the growth rate of non-dysplastic Barrettā€™s esophagus cells. Compared to the wild-type VMP1 protein, which mediates normal cellular autophagy, RPS6KB1ā€“VMP1 fusion exhibited aberrant subcellular localization and was relatively ineffective in triggering autophagy. Overall, our findings identified RPS6KB1ā€“VMP1 as a genetic fusion that promotes EAC by modulating autophagy-related processes, offering new insights into the molecular pathogenesis of esophageal adenocarcinomas

    Linkage and related analyses of Barrett's esophagus and its associated adenocarcinomas

    Get PDF
    BACKGROUND: Familial aggregation and segregation analysis studies have provided evidence of a genetic basis for esophageal adenocarcinoma (EAC) and its premalignant precursor, Barrett's esophagus (BE). We aim to demonstrate the utility of linkage analysis to identify the genomic regions that might contain the genetic variants that predispose individuals to this complex trait (BE and EAC). METHODS: We genotyped 144 individuals in 42 multiplex pedigrees chosen from 1000 singly ascertained BE/EAC pedigrees, and performed both modelā€based and modelā€free linkage analyses, using S.A.G.E. and other software. Segregation models were fitted, from the data on both the 42 pedigrees and the 1000 pedigrees, to determine parameters for performing modelā€based linkage analysis. Modelā€based and modelā€free linkage analyses were conducted in two sets of pedigrees: the 42 pedigrees and a subset of 18 pedigrees with female affected members that are expected to be more genetically homogeneous. Genomeā€wide associations were also tested in these families. RESULTS: Linkage analyses on the 42 pedigrees identified several regions consistently suggestive of linkage by different linkage analysis methods on chromosomes 2q31, 12q23, and 4p14. A linkage on 15q26 is the only consistent linkage region identified in the 18 femaleā€affected pedigrees, in which the linkage signal is higher than in the 42 pedigrees. Other tentative linkage signals are also reported. CONCLUSION: Our linkage study of BE/EAC pedigrees identified linkage regions on chromosomes 2, 4, 12, and 15, with some reported associations located within our linkage peaks. Our linkage results can help prioritize association tests to delineate the genetic determinants underlying susceptibility to BE and EAC

    A second-generation 15-PGDH inhibitor promotes bone marrow transplant recovery independently of age, transplant dose and granulocyte colony-stimulating factor support

    Get PDF
    Hematopoietic stem cell transplantation following myeloablative chemotherapy is a curative treatment for many hematopoietic malignancies. However, profound granulocytopenia during the interval between transplantation and marrow recovery exposes recipients to risks of fatal infection, a significant source of transplant-associated morbidity and mortality. We have previously described the discovery of a small molecule, SW033291, that potently inhibits the prostaglandin degrading enzyme 15-PGDH, increases bone marrow prostaglandin E2, and accelerates hematopoietic recovery following murine transplant. Here we describe the efficacy of (+)-SW209415, a second-generation 15-PGDH inhibitor, in an expanded range of models relevant to human transplantation. (+)-SW209415 is 10,000-fold more soluble, providing the potential for intravenous delivery, while maintaining potency in inhibiting 15-PGDH, increasing in vivo prostaglandin E2, and accelerating hematopoietic regeneration following transplantation. In additional models, (+)-SW209415: (i) demonstrated synergy with granulocyte colony-stimulating factor, the current standard of care; (ii) maintained efficacy as transplant cell dose was escalated; (iii) maintained efficacy when transplant donors and recipients were aged; and (iv) potentiated homing in xenotransplants using human hematopoietic stem cells. (+)-SW209415 showed no adverse effects, no potentiation of in vivo growth of human myeloma and leukemia xenografts, and, on chronic high-dose administration, no toxicity as assessed by weight, blood counts and serum chemistry. These studies provide independent chemical confirmation of the activity of 15-PGDH inhibitors in potentiating hematopoietic recovery, extend the range of models in which inhibiting 15-PGDH demonstrates activity, allay concerns regarding potential for adverse effects from increasing prostaglandin E2, and thereby, advance 15-PGDH as a therapeutic target for potentiating hematopoietic stem cell transplantation
    • ā€¦
    corecore