22 research outputs found
No Fine End for a Modern Day Alice in Transit
To the reader---; How I live is a giant writing thing, even when I\u27m not writing. There is always breath, both shallow and deep, and somewhere, wet jackets, sides of the same world. It is about the blob, mostly because all of this has been written and said but for the ghost that follows me around. What matters most finds us when we are open, the way a flower opens up for the Sun I write because I don\u27t have a choice, the way Alice had to go through Wonderland before she could get out. What is left, having left Wonderland? But, wonder of course. Here is absolute necessity because \u27Writing, I feel, is an art, and artists, I feel, are human beings\u27 (e.e. Cummings). The blob, you see. Simultaneously, a giant sphere, all parts working at once. Nothing is fully separate. Don\u27t believe me? Neither do the bugs. Life is very serious, and strange, and funny. Go ask Alice. Because guess what, the bugs don\u27t believe her either; Let my truth be your truth, and then change it somewhere in the process, wherever you see fit. Things lie deeply wedged in the world, and none of me knows quite what the world is, just that it is. Just as you must be true, I have given myself to the world that wants me (as there are more than one when you take into account the wetness of imagination), because if I don\u27t, then what\u27s this life anyway? What\u27s this world? Peter Gabriel says, \u27If you don\u27t get given you learn to take, and I will take you.\u27 You ought to say this, Too \u27Tis better to be given over to something than to force myself into a mold because I want to fit somewhere amongst the made constructions that hold life together. I am only what I am in this poetry. It is about many things, this book.*; (Abstract shortened by UMI.)
Quantum state preparation and macroscopic entanglement in gravitational-wave detectors
Long-baseline laser-interferometer gravitational-wave detectors are operating
at a factor of 10 (in amplitude) above the standard quantum limit (SQL) within
a broad frequency band. Such a low classical noise budget has already allowed
the creation of a controlled 2.7 kg macroscopic oscillator with an effective
eigenfrequency of 150 Hz and an occupation number of 200. This result, along
with the prospect for further improvements, heralds the new possibility of
experimentally probing macroscopic quantum mechanics (MQM) - quantum mechanical
behavior of objects in the realm of everyday experience - using
gravitational-wave detectors. In this paper, we provide the mathematical
foundation for the first step of a MQM experiment: the preparation of a
macroscopic test mass into a nearly minimum-Heisenberg-limited Gaussian quantum
state, which is possible if the interferometer's classical noise beats the SQL
in a broad frequency band. Our formalism, based on Wiener filtering, allows a
straightforward conversion from the classical noise budget of a laser
interferometer, in terms of noise spectra, into the strategy for quantum state
preparation, and the quality of the prepared state. Using this formalism, we
consider how Gaussian entanglement can be built among two macroscopic test
masses, and the performance of the planned Advanced LIGO interferometers in
quantum-state preparation
Searching for a Stochastic Background of Gravitational Waves with LIGO
The Laser Interferometer Gravitational-wave Observatory (LIGO) has performed
the fourth science run, S4, with significantly improved interferometer
sensitivities with respect to previous runs. Using data acquired during this
science run, we place a limit on the amplitude of a stochastic background of
gravitational waves. For a frequency independent spectrum, the new limit is
. This is currently the most sensitive
result in the frequency range 51-150 Hz, with a factor of 13 improvement over
the previous LIGO result. We discuss complementarity of the new result with
other constraints on a stochastic background of gravitational waves, and we
investigate implications of the new result for different models of this
background.Comment: 37 pages, 16 figure
A Cryogenic Silicon Interferometer for Gravitational-wave Detection
The detection of gravitational waves from compact binary mergers by LIGO has
opened the era of gravitational wave astronomy, revealing a previously hidden
side of the cosmos. To maximize the reach of the existing LIGO observatory
facilities, we have designed a new instrument that will have 5 times the range
of Advanced LIGO, or greater than 100 times the event rate. Observations with
this new instrument will make possible dramatic steps toward understanding the
physics of the nearby universe, as well as observing the universe out to
cosmological distances by the detection of binary black hole coalescences. This
article presents the instrument design and a quantitative analysis of the
anticipated noise floor
A Cryogenic Silicon Interferometer for Gravitational-wave Detection
The detection of gravitational waves from compact binary mergers by LIGO has opened the era of gravitational wave astronomy, revealing a previously hidden side of the cosmos. To maximize the reach of the existing LIGO observatory facilities, we have designed a new instrument able to detect gravitational waves at distances 5 times further away than possible with Advanced LIGO, or at greater than 100 times the event rate. Observations with this new instrument will make possible dramatic steps toward understanding the physics of the nearby Universe, as well as observing the Universe out to cosmological distances by the detection of binary black hole coalescences. This article presents the instrument design and a quantitative analysis of the anticipated noise floor
A framework for human microbiome research
A variety of microbial communities and their genes (the microbiome) exist throughout the human body, with fundamental roles in human health and disease. The National Institutes of Health (NIH)-funded Human Microbiome Project Consortium has established a population-scale framework to develop metagenomic protocols, resulting in a broad range of quality-controlled resources and data including standardized methods for creating, processing and interpreting distinct types of high-throughput metagenomic data available to the scientific community. Here we present resources from a population of 242 healthy adults sampled at 15 or 18 body sites up to three times, which have generated 5,177 microbial taxonomic profiles from 16S ribosomal RNA genes and over 3.5 terabases of metagenomic sequence so far. In parallel, approximately 800 reference strains isolated from the human body have been sequenced. Collectively, these data represent the largest resource describing the abundance and variety of the human microbiome, while providing a framework for current and future studies
Structure, function and diversity of the healthy human microbiome
Author Posting. © The Authors, 2012. This article is posted here by permission of Nature Publishing Group. The definitive version was published in Nature 486 (2012): 207-214, doi:10.1038/nature11234.Studies of the human microbiome have revealed that even healthy individuals differ remarkably in the microbes that occupy habitats such as the gut, skin and vagina. Much of this diversity remains unexplained, although diet, environment, host genetics and early microbial exposure have all been implicated. Accordingly, to characterize the ecology of human-associated microbial communities, the Human Microbiome Project has analysed the largest cohort and set of distinct, clinically relevant body habitats so far. We found the diversity and abundance of each habitat’s signature microbes to vary widely even among healthy subjects, with strong niche specialization both within and among individuals. The project encountered an estimated 81–99% of the genera, enzyme families and community configurations occupied by the healthy Western microbiome. Metagenomic carriage of metabolic pathways was stable among individuals despite variation in community structure, and ethnic/racial background proved to be one of the strongest associations of both pathways and microbes with clinical metadata. These results thus delineate the range of structural and functional configurations normal in the microbial communities of a healthy population, enabling future characterization of the epidemiology, ecology and translational applications of the human microbiome.This research was supported in
part by National Institutes of Health grants U54HG004969 to B.W.B.; U54HG003273
to R.A.G.; U54HG004973 to R.A.G., S.K.H. and J.F.P.; U54HG003067 to E.S.Lander;
U54AI084844 to K.E.N.; N01AI30071 to R.L.Strausberg; U54HG004968 to G.M.W.;
U01HG004866 to O.R.W.; U54HG003079 to R.K.W.; R01HG005969 to C.H.;
R01HG004872 to R.K.; R01HG004885 to M.P.; R01HG005975 to P.D.S.;
R01HG004908 to Y.Y.; R01HG004900 to M.K.Cho and P. Sankar; R01HG005171 to
D.E.H.; R01HG004853 to A.L.M.; R01HG004856 to R.R.; R01HG004877 to R.R.S. and
R.F.; R01HG005172 to P. Spicer.; R01HG004857 to M.P.; R01HG004906 to T.M.S.;
R21HG005811 to E.A.V.; M.J.B. was supported by UH2AR057506; G.A.B. was
supported by UH2AI083263 and UH3AI083263 (G.A.B., C. N. Cornelissen, L. K. Eaves
and J. F. Strauss); S.M.H. was supported by UH3DK083993 (V. B. Young, E. B. Chang,
F. Meyer, T. M. S., M. L. Sogin, J. M. Tiedje); K.P.R. was supported by UH2DK083990 (J.
V.); J.A.S. and H.H.K. were supported by UH2AR057504 and UH3AR057504 (J.A.S.);
DP2OD001500 to K.M.A.; N01HG62088 to the Coriell Institute for Medical Research;
U01DE016937 to F.E.D.; S.K.H. was supported by RC1DE0202098 and
R01DE021574 (S.K.H. and H. Li); J.I. was supported by R21CA139193 (J.I. and
D. S. Michaud); K.P.L. was supported by P30DE020751 (D. J. Smith); Army Research
Office grant W911NF-11-1-0473 to C.H.; National Science Foundation grants NSF
DBI-1053486 to C.H. and NSF IIS-0812111 to M.P.; The Office of Science of the US
Department of Energy under Contract No. DE-AC02-05CH11231 for P.S. C.; LANL
Laboratory-Directed Research and Development grant 20100034DR and the US
Defense Threat Reduction Agency grants B104153I and B084531I to P.S.C.; Research
Foundation - Flanders (FWO) grant to K.F. and J.Raes; R.K. is an HHMI Early Career
Scientist; Gordon&BettyMoore Foundation funding and institutional funding fromthe
J. David Gladstone Institutes to K.S.P.; A.M.S. was supported by fellowships provided by
the Rackham Graduate School and the NIH Molecular Mechanisms in Microbial
Pathogenesis Training Grant T32AI007528; a Crohn’s and Colitis Foundation of
Canada Grant in Aid of Research to E.A.V.; 2010 IBM Faculty Award to K.C.W.; analysis
of the HMPdata was performed using National Energy Research Scientific Computing
resources, the BluBioU Computational Resource at Rice University
The US Program in Ground-Based Gravitational Wave Science: Contribution from the LIGO Laboratory
Recent gravitational-wave observations from the LIGO and Virgo observatories have brought a sense of great excitement to scientists and citizens the world over. Since September 2015,10 binary black hole coalescences and one binary neutron star coalescence have been observed. They have provided remarkable, revolutionary insight into the "gravitational Universe" and have greatly extended the field of multi-messenger astronomy. At present, Advanced LIGO can see binary black hole coalescences out to redshift 0.6 and binary neutron star coalescences to redshift 0.05. This probes only a very small fraction of the volume of the observable Universe. However, current technologies can be extended to construct "3rd Generation" (3G) gravitational-wave observatories that would extend our reach to the very edge of the observable Universe. The event rates over such a large volume would be in the hundreds of thousands per year (i.e. tens per hour). Such 3G detectors would have a 10-fold improvement in strain sensitivity over the current generation of instruments, yielding signal-to-noise ratios of 1000 for events like those already seen. Several concepts are being studied for which engineering studies and reliable cost estimates will be developed in the next 5 years