299 research outputs found
Bioaccumulation and biomagnification of microplastics in marine organisms: a review and meta-analysis of current data
Microplastic (MP) contamination has been well documented across a range of habitats and for a large number of organisms in the marine environment. Consequently, bioaccumulation, and in particular biomagnification of MPs and associated chemical additives, are often inferred to occur in marine food webs. Presented here are the results of a systematic literature review to examine whether current, published findings support the premise that MPs and associated chemical additives bioaccumulate and biomagnify across a general marine food web. First, field and laboratory-derived contamination data on marine species were standardised by sample size from a total of 116 publications. Second, following assignment of each species to one of five main trophic levels, the average uptake of MPs and of associated chemical additives was estimated across all species within each level. These uptake data within and across the five trophic levels were then critically examined for any evidence of bioaccumulation and biomagnification. Findings corroborate previous studies that MP bioaccumulation occurs within each trophic level, while current evidence around bioaccumulation of associated chemical additives is much more ambiguous. In contrast, MP biomagnification across a general marine food web is not supported by current field observations, while results from the few laboratory studies supporting trophic transfer are hampered by using unrealistic exposure conditions. Further, a lack of both field and laboratory data precludes an examination of potential trophic transfer and biomagnification of chemical additives associated with MPs. Combined, these findings indicate that, although bioaccumulation of MPs occurs within trophic levels, no clear sign of MP biomagnification in situ was observed at the higher trophic levels. Recommendations for future studies to focus on investigating ingestion, retention and depuration rates for MPs and chemical additives under environmentally realistic conditions, and on examining the potential of multi-level trophic transfer for MPs and chemical additives have been made
Comparative bio-accessibility, bioavailability and bioequivalence of quercetin, apigenin, glucoraphanin and carotenoids from freeze-dried vegetables incorporated into a baked snack versus minimally processed vegetables:Evidence from in vitro models and a human bioavailability study
The aim was to incorporate vegetables containing the phytochemicals quercetin, apigenin, glucoraphanin and carotenoids into a processed potato-based snack and assess their bioaccessibility and bioavailability. Three different processing routes were tested for incorporation and retention of phytochemicals in snacks using individually quick frozen or freeze-dried vegetables. No significant differences in the uptake or transport of quercetin or apigenin between a vegetable mix or snacks were observed using the CaCo-2 transwell model. Simulated in vitro digestions predicted a substantial release of quercetin and apigenin, some release of glucoraphanin but none for carotenes from either the snack or equivalent steamed vegetables. In humans, there were no significant differences in the bioavailability of quercetin, apigenin or glucoraphanin from the snack or equivalent steamed vegetables. We have shown that significant quantities of freeze-dried vegetables can be incorporated into snacks with good retention of phytochemicals and with similar bioavailability to equivalent steamed vegetables
2017 Scientific Consensus Statement: land use impacts on the Great Barrier Reef water quality and ecosystem condition, Chapter 3: the risk from anthropogenic pollutants to Great Barrier Reef coastal and marine ecosystems
In this chapter, we applied an ecological risk assessment approach to assess the likelihood of exposure and potential risks from land-based pollutants to Great Barrier Reef coastal (floodplain wetlands and floodplains) and marine (coral reefs and seagrass meadows) ecosystems. Ecological risk is defined as the product of the likelihood of an effect occurring and the consequences if that effect was to occur
Acute Consumption of Flavan-3-ol-Enriched Dark Chocolate Affects Human Endogenous Metabolism
Flavan-3-ols and methylxanthines have potential beneficial effects on human health including reducing cardiovascular risk. We performed a randomized controlled crossover intervention trial to assess the acute effects of consumption of flavan-3-ol-enriched dark chocolate, compared with standard dark chocolate and white chocolate, on the human metabolome. We assessed the metabolome in urine and blood plasma samples collected before and at 2 and 6 h after consumption of chocolates in 42 healthy volunteers using a nontargeted metabolomics approach. Plasma samples were assessed and showed differentiation between time points with no further separation among the three chocolate treatments. Multivariate statistics applied to urine samples could readily separate the postprandial time points and distinguish between the treatments. Most of the markers responsible for the multivariate discrimination between the chocolates were of dietary origin. Interestingly, small but significant level changes were also observed for a subset of endogenous metabolites. H-1 NMR revealed that flavan-3-ol-enriched dark chocolate and standard dark chocolate reduced urinary levels of creatinine, lactate, some amino acids, and related degradation products and increased the levels of pyruvate and 4-hydroxyphenylacetate, a phenolic compound of bacterial origin. This study demonstrates that an acute chocolate intervention can significantly affect human metabolism
Mobster: Accurate detection of mobile element insertions in next generation sequencing data
Mobile elements are major drivers in changing genomic architecture and can cause disease. The detection of mobile elements is hindered due to the low mappability of their highly repetitive sequences. We have developed an algorithm, called Mobster, to detect non-reference mobile element insertions in next generation sequencing data from both whole genome and whole exome studies. Mobster uses discordant read pairs and clipped reads in combination with consensus sequences of known active mobile elements. Mobster has a low false discovery rate and high recall rate for both L1 and Alu elements. Mobster is available at http://sourceforge.net/projects/mobster. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13059-014-0488-x) contains supplementary material, which is available to authorized users
Phenolic Metabolites in the Urine and Plasma of Healthy Men After Acute Intake of Purple Potato Extract Rich in Methoxysubstituted Monoacylated Anthocyanins
Scope: Structurally stable acylated anthocyanins have potential in various food applications but the effects of acylation and methoxysubstitution on anthocyanin metabolism are poorly understood. This is the first study thoroughly investigating phenolic metabolites, their time-wise changes, and pharmacokinetics following an acute intake of methoxysubstituted monoacylated anthocyanins.Methods and Results: Healthy male volunteers (n = 17) consumed a yellow potato meal with and without purple potato extract rich in acylated anthocyanins (152 mg) and hydroxycinnamic acid conjugates (140 mg). Ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) is used for identification and quantification of metabolites from serially collected urine and plasma. While the parent anthocyanins are not detected, 28 phenolic metabolites from urine and 14 from plasma are quantified, including hydroxybenzoic and hydroxycinnamic acids and protocatechuic acid sulfates and glucuronides; three (catechol, gallic acid-4-O-glucuronide, and 2-methoxybenzoic acid) are detected for the first time after anthocyanin-rich food. Urinary hippuric acid is the most abundant with an increase of 139 mu M mM(-1) creatinine after the treatment. A large additional set of tentatively identified phenolic metabolites are detected. Late urinary peak time values suggest colonic degradation.Conclusion: Acylated anthocyanins are more bioavailable than earlier reported after extensive degradation in human and/or colonial metabolism to phenolic metabolites, which may be further conjugated and demethylated.</div
Comparison of antibacterial activity of phytochemicals against common foodborne pathogens and potential for selection of resistance
Antimicrobial resistance is now commonly observed in bacterial isolates from multiple settings, compromising the efficacy of current antimicrobial agents. Therefore, there is an urgent requirement for efficacious novel antimicrobials to be used as therapeutics, prophylactically or as preservatives. One promising source of novel antimicrobial chemicals is phytochemicals, which are secondary metabolites produced by plants for numerous purposes, including antimicrobial defence. In this report, we compare the bioactivity of a range of phytochemical compounds, testing their ability to directly inhibit growth or to potentiate other antimicrobials against Salmonella enterica Typhimurium, Pseudomonas aeruginosa, Listeria monocytogenes, and Staphylococcus aureus. We found that nine compounds displayed consistent bioactivity either as direct antimicrobials or as potentiators. Thymol at 0.5 mg/mL showed the greatest antimicrobial effect and significantly reduced the growth of all species, reducing viable cell populations by 66.8%, 43.2%, 29.5%, and 70.2% against S. enterica Typhimurium, S. aureus, P. aeruginosa, and L. monocytogenes, respectively. Selection of mutants with decreased susceptibility to thymol was possible for three of the pathogens, at a calculated rate of 3.77 × 10−8, and characterisation of S. enterica Typhimurium mutants showed a low-level MDR phenotype due to over-expression of the major efflux system AcrAB-TolC. These data show that phytochemicals can have strong antimicrobial activity, but emergence of resistance should be evaluated in any further development
Bacterial DNAemia is associated with serum zonulin levels in older subjects
The increased presence of bacteria in blood is a plausible contributing factor in the development and progression of aging-associated diseases. In this context, we performed the quantification and the taxonomic profiling of the bacterial DNA in blood samples collected from forty-three older subjects enrolled in a nursing home. Quantitative PCR targeting the 16S rRNA gene revealed that all samples contained detectable amounts of bacterial DNA with a concentration that varied considerably between subjects. Correlation analyses revealed that the bacterial DNAemia (expressed as concentration of 16S rRNA gene copies in blood) significantly associated with the serum levels of zonulin, a marker of intestinal permeability. This result was confirmed by the analysis of a second set of blood samples collected from the same subjects. 16S rRNA gene profiling revealed that most of the bacterial DNA detected in blood was ascribable to the phylum Proteobacteria with a predominance of the genus Pseudomonas. Several control samples were also analyzed to assess the influence of contaminant bacterial DNA potentially originating from reagents and materials. The data reported here suggest that para-cellular permeability of epithelial (and, potentially, endothelial) cell layers may play an important role in bacterial migration into the bloodstream. Bacterial DNAemia is likely to impact on several aspects of host physiology and could underpin the development and prognosis of various diseases in older subjects
Lack of acute or chronic effects of epicatechin-rich and procyanidin-rich apple extracts on blood pressure and cardiometabolic biomarkers in adults with moderately elevated blood pressure: a randomized, placebo-controlled crossover trial
Background: The reported effects of flavanol-rich foods such as cocoa, dark chocolate, and apples on blood pressure and endothelial function may be due to the monomeric flavanols [mainly (–)-epicatechin (EC)], the oligomeric flavanols [procyanidins (PCs)], or other components. Reports of well-controlled intervention studies that test the effects of isolated oligomeric flavanols on biomarkers of cardiovascular health are lacking. Objective: We studied the acute and chronic effects of an EC-rich apple flavanol extract and isolated apple PCs on systolic blood pressure (BP) and other cardiometabolic biomarkers. Design: Forty-two healthy men and women with moderately elevated BP completed this randomized, double-blind, placebo-controlled, 4-arm crossover trial. Participants ingested a single dose of an apple flavanol extract (70 mg monomeric flavanols, 65 mg PCs), a double dose of this extract (140 mg monomeric flavanols, 130 mg PCs), an apple PC extract (130 mg PCs, 6.5 mg monomeric flavanols), or placebo capsules once daily for 4 wk, in random order. Biomarkers of cardiovascular disease risk and vascular function were measured before and 2 h after ingestion of the first dose and after the 4-wk intervention. Results: Compared with placebo, none of the isolated flavanol treatments significantly (P < 0.05) changed systolic or diastolic BP (peripheral and aortic), plasma nitric oxide (NO) reaction products, or measures of arterial stiffness (carotid femoral pulse-wave velocity, brachial-ankle pulse-wave velocity, or Augmentation Index) after 2 h or 4 wk of the intervention. There were no changes in plasma endogenous metabolite profiles or circulating NO; endothelin 1; total, HDL, or LDL cholesterol; triglycerides; fasting glucose; fructosamine; or insulin after 4 wk of the intervention. Conclusions: Our data suggest that, in isolation, neither monomeric flavanols nor PCs affect BP, blood lipid profiles, endothelial function, or glucose control in individuals with moderately elevated BP. The reported benefits of consuming flavanol-rich cocoa, chocolate, and apple products appear to be dependent on other components, which may work in combination with monomeric flavanols and PCs. This trial was registered at www.clinicaltrials.gov as NCT02013856
2017 Scientific Consensus Statement: land use impacts on the Great Barrier Reef water quality and ecosystem condition. Chapter 4: management options and their effectiveness
This chapter seeks to answer the following questions:
1. What are the values of the Great Barrier Reef?
2. How effective are better agricultural practices in improving water quality?
3. How can we improve the uptake of better agricultural practices?
4. What water quality improvement can non-agricultural land uses contribute?
5. How can Great Barrier Reef water quality improvement programs be improved?
Each section summarises the currently available peer reviewed literature and comments on implications for management and research gaps.
This chapter has a wider scope than previous Scientific Consensus Statements, including, for the first time, the social and governance dimensions of management and the management of non-agricultural land uses. These new sections are constrained by a lack of Great Barrier Reef–specific data and information. The relevance of information from other locations must be carefully considered. In comparison, the agricultural practice change and economics sections provide an update on material compiled as part of the 2013 Scientific Consensus Statement.
This report has been confined to peer reviewed literature, which is generally published in books and journals or major reports. There is additional evidence in grey literature, such as project and program reports, that has not been included here. Each section of this chapter has been compiled by a writing team and then revised following a series of review processes
- …