105 research outputs found

    Inflammation in acute kidney injury,”

    Get PDF
    Abstract Ischemia-reperfusion injury (IRI) is one of the major causes of acute kidney injury (AKI) and evidence supporting the involvement of both innate and adaptive immunity in renal IRI has accumulated in recent years. In addition to leukocytes, kidney endothelial cells promote inflammation after IRI by increasing adhesion molecule expression and vascular permeability. Kidney tubular epithelial cells increase complement binding and upregulate toll-like receptors, both of which lead to cytokine/chemokine production in IRI. Activation of kidney resident dendritic cells, interferon-γ-producing neutrophils, infiltrating macrophages, CD4+ T cells, B cells and invariant natural killer T cells are all implicated in the pathogenesis of AKI. The complex interplay between innate and adaptive immunity in renal IRI is still not completely understood, but major advances have been made. This review summarizes these recent advances to further our understanding of the immune mechanisms of acute kidney injury

    Compartmentalization of neutrophils in the kidney and lung following acute ischemic kidney injury

    Get PDF
    During renal ischemia-reperfusion, local and distant tissue injury is caused by an influx of neutrophils into the affected tissues. Here we measured the kinetics of margination and transmigration of neutrophils in vivo in the kidney and lungs following renal ischemia-reperfusion. After bilateral renal injury, kidney neutrophil content increased threefold at 24 h. The neutrophils were found primarily in the interstitium and to a lesser degree marginated to the vascular endothelium. These interstitial neutrophils had significantly lower levels of intracellular IFN-γ, IL-4, IL-6, and IL-10 a tendency for decreased amounts of IL-4 and TNF-α compared to the marginated neutrophils. Localization of the neutrophils to the kidney interstitium was confirmed by high resolution microscopy and these sites of transmigration were directly associated with areas of increased vascular permeability. Activation of the adenosine 2A receptor significantly decreased both kidney neutrophil transmigration by about half and vascular permeability by about a third. After unilateral renal ischemia-reperfusion, the unclipped kidney and lungs did not accumulate interstitial neutrophils or have increased vascular permeability despite a marked increase of neutrophil margination in the lungs. Our findings suggest there is a sequential recruitment and transmigration of neutrophils from the vasculature into the kidney interstitium at the site of tissue injury following renal ischemia-reperfusion

    Slit2 prevents neutrophil recruitment and renal ischemia-reperfusion injury

    Get PDF
    Neutrophils recruited to the postischemic kidney contribute to the pathogenesis of ischemia-reperfusion injury (IRI), which is the most common cause of renal failure among hospitalized patients. The Slit family of secreted proteins inhibits chemotaxis of leukocytes by preventing activation of Rho-family GTPases, suggesting that members of this family might modulate the recruitment of neutrophils and the resulting IRI. Here, in static and microfluidic shear assays, Slit2 inhibited multiple steps required for the infiltration of neutrophils into tissue. Specifically, Slit2 blocked the capture and firm adhesion of human neutrophils to inflamed vascular endothelial barriers as well as their subsequent transmigration. To examine whether these observations were relevant to renal IRI, we administered Slit2 to mice before bilateral clamping of the renal pedicles. Assessed at 18 hours after reperfusion, Slit2 significantly inhibited renal tubular necrosis, neutrophil and macrophage infiltration, and rise in plasma creatinine. In vitro, Slit2 did not impair the protective functions of neutrophils, including phagocytosis and superoxide production, and did not inhibit neutrophils from killing the extracellular pathogen Staphylococcus aureus. In vivo, administration of Slit2 did not attenuate neutrophil recruitment or bacterial clearance in mice with ascending Escherichia coli urinary tract infections and did not increase the bacterial load in the livers of mice infected with the intracellular pathogen Listeriamonocytogenes. Collectively, these results suggest that Slit2 may hold promise as a strategy to combat renal IRI without compromising the protective innate immune response. Copyright © 2013 by the American Society of Nephrology

    Human Recombinant Alkaline Phosphatase (Ilofotase Alfa) Protects Against Kidney Ischemia-Reperfusion Injury in Mice and Rats Through Adenosine Receptors

    Get PDF
    Adenosine triphosphate (ATP) released from injured or dying cells is a potent pro-inflammatory “danger” signal. Alkaline phosphatase (AP), an endogenous enzyme that de-phosphorylates extracellular ATP, likely plays an anti-inflammatory role in immune responses. We hypothesized that ilofotase alfa, a human recombinant AP, protects kidneys from ischemia-reperfusion injury (IRI), a model of acute kidney injury (AKI), by metabolizing extracellular ATP to adenosine, which is known to activate adenosine receptors. Ilofotase alfa (iv) with or without ZM241,385 (sc), a selective adenosine A2A receptor (A2AR) antagonist, was administered 1 h before bilateral IRI in WT, A2AR KO (Adora2a–/–) or CD73–/– mice. In additional studies recombinant alkaline phosphatase was given after IRI. In an AKI-on-chronic kidney disease (CKD) ischemic rat model, ilofotase alfa was given after the three instances of IRI and rats were followed for 56 days. Ilofotase alfa in a dose dependent manner decreased IRI in WT mice, an effect prevented by ZM241,385 and partially prevented in Adora2a–/– mice. Enzymatically inactive ilofotase alfa was not protective. Ilofotase alfa rescued CD73–/– mice, which lack a 5′-ectonucleotidase that dephosphorylates AMP to adenosine; ZM241,385 inhibited that protection. In both rats and mice ilofotase alfa ameliorated IRI when administered after injury, thus providing relevance for therapeutic dosing of ilofotase alfa following established AKI. In an AKI-on-CKD ischemic rat model, ilofotase alfa given after the third instance of IRI reduced injury. These results suggest that ilofotase alfa promotes production of adenosine from liberated ATP in injured kidney tissue, thereby amplifying endogenous mechanisms that can reverse tissue injury, in part through A2AR-and non-A2AR-dependent signaling pathways

    Bone marrow stromal cell antigen-1 (CD157) regulated by sphingosine kinase 2 mediates kidney fibrosis

    Get PDF
    Chronic kidney disease is a progressive disease that may lead to end-stage renal disease. Interstitial fibrosis develops as the disease progresses. Therapies that focus on fibrosis to delay or reverse progressive renal failure are limited. We and others showed that sphingosine kinase 2-deficient mice (Sphk2−/−) develop less fibrosis in mouse models of kidney fibrosis. Sphingosine kinase2 (SphK2), one of two sphingosine kinases that produce sphingosine 1- phosphate (S1P), is primarily located in the nucleus. S1P produced by SphK2 inhibits histone deacetylase (HDAC) and changes histone acetylation status, which can lead to altered target gene expression. We hypothesized that Sphk2 epigenetically regulates downstream genes to induce fibrosis, and we performed a comprehensive analysis using the combination of RNA-seq and ChIP-seq. Bst1/CD157 was identified as a gene that is regulated by SphK2 through a change in histone acetylation level, and Bst1−/− mice were found to develop less renal fibrosis after unilateral ischemia-reperfusion injury, a mouse model of kidney fibrosis. Although Bst1 is a cell-surface molecule that has a wide variety of functions through its varied enzymatic activities and downstream intracellular signaling pathways, no studies on the role of Bst1 in kidney diseases have been reported previously. In the current study, we demonstrated that Bst1 is a gene that is regulated by SphK2 through epigenetic change and is critical in kidney fibrosis

    Fenoldopam use in a burn intensive care unit: a retrospective study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Fenoldopam mesylate is a highly selective dopamine-1 receptor agonist approved for the treatment of hypertensive emergencies that may have a role at low doses in preserving renal function in those at high risk for or with acute kidney injury (AKI). There is no data on low-dose fenoldopam in the burn population. The purpose of our study was to describe our use of low-dose fenoldopam (0.03-0.09 μg/kg/min) infusion in critically ill burn patients with AKI.</p> <p>Methods</p> <p>We performed a retrospective analysis of consecutive patients admitted to our burn intensive care unit (BICU) with severe burns from November 2005 through September 2008 who received low-dose fenoldopam. Data obtained included systolic blood pressure, serum creatinine, vasoactive medication use, urine output, and intravenous fluid. Patients on concomitant continuous renal replacement therapy were excluded. Modified inotrope score and vasopressor dependency index were calculated. One-way analysis of variance with repeated measures, Wilcoxson signed rank, and chi-square tests were used. Differences were deemed significant at p < 0.05.</p> <p>Results</p> <p>Seventy-seven patients were treated with low-dose fenoldopam out of 758 BICU admissions (10%). Twenty (26%) were AKI network (AKIN) stage 1, 14 (18%) were AKIN stage 2, 42 (55%) were AKIN stage 3, and 1 (1%) was AKIN stage 0. Serum creatinine improved over the first 24 hours and continued to improve through 48 hours (<it>p </it>< 0.05). There was an increase in systolic blood pressure in the first 24 hours that was sustained through 48 hours after initiation of fenoldopam (<it>p </it>< 0.05). Urine output increased after initiation of fenoldopam without an increase in intravenous fluid requirement (<it>p </it>< 0.05; <it>p </it>= NS). Modified inotrope score and vasopressor dependency index both decreased over 48 hours (<it>p </it>< 0.0001; <it>p </it>= 0.0012).</p> <p>Conclusions</p> <p>These findings suggest that renal function was preserved and that urine output improved without a decrease in systolic blood pressure, increase in vasoactive medication use, or an increase in resuscitation requirement in patients treated with low-dose fenoldopam. A randomized controlled trial is required to establish the efficacy of low-dose fenoldopam in critically ill burn patients with AKI.</p

    Implementation of Novel Biomarkers in the Diagnosis, Prognosis, and Management of Acute Kidney Injury: Executive Summary from the Tenth Consensus Conference of the Acute Dialysis Quality Initiative (ADQI)

    Get PDF
    Detection of acute kidney injury is undergoing a dynamic revolution ofbiomarker technology allowing greater, earlier, and more accuratedetermination of diagnosis, prognosis, and with powerful implication formanagement. Biomarkers can be broadly considered as any measurablebiologic entity or process that allows differentiation between normalfunction and injury or disease. The ADQI (Acute Dialysis QualityInitiative) had its Ninth Consensus Conference dedicated to synthesisand formulation of the existing literature on biomarkers for thedetection of acute kidney injury in a variety of settings. In the papersthat accompany this summary, ADQI workgroups fully develop key conceptsfrom a summary of the literature in the domains of early diagnosis,differential diagnosis, prognosis and management, and concurrentphysiologic and imaging measures
    corecore