179 research outputs found

    Use of the D-R Model to Define Trends in the Emergence of Ceftazidime-Resistant Escherichia coli in China

    Get PDF
    OBJECTIVE: To assess the efficacy of the D-R model for defining trends in the appearance of Ceftazidime-resistant Escherichia coli. METHODS: Actual data related to the manifestation of Ceftazidime-resistant E. coli spanning years 1996-2009 were collected from the China National Knowledge Internet. These data originated from 430 publications encompassing 1004 citations of resistance. The GM(1,1) and the novel D-R models were used to fit current data and from this, predict trends in the appearance of the drug-resistant phenotype. The results were evaluated by Relative Standard Error (RSE), Mean Absolute Deviation (MAD) and Mean Absolute Error (MAE). RESULTS: Results from the D-R model showed a rapid increase in the appearance of Ceftazidime-resistant E. coli in this region of the world. These results were considered accurate based upon the minor values calculated for RSE, MAD and MAE, and were equivalent to or better than those generated by the GM(1,1) model. CONCLUSION: The D-R model which was originally created to define trends in the transmission of swine viral diseases can be adapted to evaluating trends in the appearance of Ceftazidime-resistant E. coli. Using only a limited amount of data to initiate the study, our predictions closely mirrored the changes in drug resistance rates which showed a steady increase through 2005, a decrease between 2005 and 2008, and a dramatic inflection point and abrupt increase beginning in 2008. This is consistent with a resistance profile where changes in drug intervention temporarily delayed the upward trend in the appearance of the resistant phenotype; however, resistance quickly resumed its upward momentum in 2008 and this change was better predicted using the D-R model. Additional work is needed to determine if this pattern of "increase-control-increase" is indicative of Ceftazidime-resistant E. coli or can be generally ascribed to bacteria acquiring resistance to drugs in the absence of alternative intervention

    Serratamolide is a hemolytic factor produced by Serratia marcescens

    Get PDF
    Serratia marcescens is a common contaminant of contact lens cases and lenses. Hemolytic factors of S. marcescens contribute to the virulence of this opportunistic bacterial pathogen. We took advantage of an observed hyper-hemolytic phenotype of crp mutants to investigate mechanisms of hemolysis. A genetic screen revealed that swrW is necessary for the hyper-hemolysis phenotype of crp mutants. The swrW gene is required for biosynthesis of the biosurfactant serratamolide, previously shown to be a broad-spectrum antibiotic and to contribute to swarming motility. Multicopy expression of swrW or mutation of the hexS transcription factor gene, a known inhibitor of swrW expression, led to an increase in hemolysis. Surfactant zones and expression from an swrW-transcriptional reporter were elevated in a crp mutant compared to the wild type. Purified serratamolide was hemolytic to sheep and murine red blood cells and cytotoxic to human airway and corneal limbal epithelial cells in vitro. The swrW gene was found in the majority of contact lens isolates tested. Genetic and biochemical analysis implicate the biosurfactant serratamolide as a hemolysin. This novel hemolysin may contribute to irritation and infections associated with contact lens use. © 2012 Shanks et al

    Event shapes in e+e- annihilation and deep inelastic scattering

    Full text link
    This article reviews the status of event-shape studies in e+e- annihilation and DIS. It includes discussions of perturbative calculations, of various approaches to modelling hadronisation and of comparisons to data.Comment: Invited topical review for J.Phys.G; 40 pages; revised version corrects some nomenclatur

    Formation of dense partonic matter in relativistic nucleus-nucleus collisions at RHIC: Experimental evaluation by the PHENIX collaboration

    Full text link
    Extensive experimental data from high-energy nucleus-nucleus collisions were recorded using the PHENIX detector at the Relativistic Heavy Ion Collider (RHIC). The comprehensive set of measurements from the first three years of RHIC operation includes charged particle multiplicities, transverse energy, yield ratios and spectra of identified hadrons in a wide range of transverse momenta (p_T), elliptic flow, two-particle correlations, non-statistical fluctuations, and suppression of particle production at high p_T. The results are examined with an emphasis on implications for the formation of a new state of dense matter. We find that the state of matter created at RHIC cannot be described in terms of ordinary color neutral hadrons.Comment: 510 authors, 127 pages text, 56 figures, 1 tables, LaTeX. Submitted to Nuclear Physics A as a regular article; v3 has minor changes in response to referee comments. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm

    Adaptive Evolution of Escherichia coli to an α-Peptide/β-Peptoid Peptidomimetic Induces Stable Resistance.

    Get PDF
    Antimicrobial peptides (AMPs) and synthetic analogues thereof target conserved structures of bacterial cell envelopes and hence, development of resistance has been considered an unlikely event. However, recently bacterial resistance to AMPs has been observed, and the aim of the present study was to determine whether bacterial resistance may also evolve against synthetic AMP analogues, e.g. α-peptide/β-peptoid peptidomimetics. E. coli ATCC 25922 was exposed to increasing concentrations of a peptidomimetic (10 lineages), polymyxin B (10 lineages), or MilliQ water (4 lineages) in a re-inoculation culturing setup covering approx. 500 generations. All 10 lineages exposed to the peptidomimetic adapted to 32 × MIC while this occurred for 8 out of 10 of the polymyxin B-exposed lineages. All lineages exposed to 32 × MIC of either the peptidomimetic or polymyxin B had a significantly increased MIC (16-32 ×) to the selection agent. Five transfers (≈ 35 generations) in unsupplemented media did not abolish resistance indicating that resistance was heritable. Single isolates from peptidomimetic-exposed lineage populations displayed MICs against the peptidomimetic from wild-type MIC to 32 × MIC revealing heterogeneous populations. Resistant isolates showed no cross-resistance against a panel of membrane-active AMPs. These isolates were highly susceptible to blood plasma antibacterial activity and were killed when plasma concentrations exceeded ≈ 30%. Notably, MIC of the peptidomimetic against resistant isolates returned to wild-type level upon addition of 25% plasma. Whole-genome sequencing of twenty isolates from four resistant lineages revealed mutations, in murein transglycosylase D (mltD) and outer-membrane proteins, which were conserved within and between lineages. However, no common resistance-conferring mutation was identified. We hypothesise that alterations in cell envelope structure result in peptidomimetic resistance, and that this may occur via several distinct mechanisms. Interestingly, this type of resistance result in a concomitant high susceptibility towards plasma, and therefore the present study does not infer additional concern for peptidomimetics as future therapeutics

    Molecular Characterization and Antimicrobial Susceptibility of Nasal Staphylococcus aureus Isolates from a Chinese Medical College Campus

    Get PDF
    Staphylococcus aureus colonization and infection occur more commonly among persons living or working in crowded conditions, but characterization of S. aureus colonization within medical communities in China is lacking. A total of 144 (15.4%, 144/935) S. aureus isolates, including 28 (3.0%, 28/935) MRSA isolates, were recovered from the nares of 935 healthy human volunteers residing on a Chinese medical college campus. All S. aureus isolates were susceptible to vancomycin, quinupristin/dalfopristin and linezolid but the majority were resistant to penicillin (96.5%), ampicillin/sulbactam (83.3%) and trimethoprim/sulfamethoxazole (93.1%). 82%, (23/28) of the MRSA isolates and 66% (77/116) of the MSSA isolates were resistant to multiple antibiotics, and 3 MRSA isolates were resistant to mupirocin—an agent commonly used for nasal decolonization. 16 different sequence types (STs), as well as SCCmec genes II, III, IVd, and V, were represented among MRSA isolates. We also identified, for the first time, two novel STs (ST1778 and ST1779) and 5 novel spa types for MRSA. MRSA isolates were distributed in different sporadic clones, and ST59-MRSA-VId- t437 was found within 3 MRSA isolates. Moreover, one isolate with multidrug resistance belonging to ST398-MRSA-V- t571 associated with animal infections was identified, and 3 isolates distributed in three different clones harbored PVL genes. Collectively, these data indicate a high prevalence of nasal MRSA carriage and molecular heterogeneity of S. aureus isolates among persons residing on a Chinese medical college campus. Identification of epidemic MRSA clones associated with community infection supports the need for more effective infection control measures to reduce nasal carriage and prevent dissemination of MRSA to hospitalized patients and health care workers in this community

    Staphylococcus haemolyticus is a reservoir of antibiotic resistance genes in the preterm infant gut

    Get PDF
    Staphylococcus haemolyticus is an important cause of sepsis in preterm infants, with gut colonization being recognized as a risk factor for infection. To better understand the diversity of S. haemolyticus among preterm infants, we generated genome sequences of S. haemolyticus strains (n = 140) from 44 stool samples of 22 preterm infants from four hospitals in England. Core genome phylogenetic analyses, incorporating 126 publicly available S. haemolyticus genome sequences, showed that 85/140 (60.1%) of the isolates, from three different hospitals, formed a clonal group with 78/85 (91.7%) strains having Multi-Locus Sequence Type (ST) 49. Antibiotic resistance genes were prevalent in the genomes. There was a strong association between the presence of mecA and phenotypic resistance to oxacillin, and the aacA-aphD gene and phenotypic resistance to gentamicin. While mecA was near-ubiquitous, none of the strains from the preterm infant cohort had a complete Staphylococcal Cassette Chromosome mec (SCCmec) element. The aacA-aphD gene was associated with the transposon Tn4001 in multiple chromosomal and plasmid contexts. Our data suggest the existence of a distinct sub-population of S. haemolyticus that has adapted to colonize the gut of preterm infants, and widespread horizontal gene transfer and recombination among this frequent colonizer of the preterm infant gut

    Modelling food security: Bridging the gap between the micro and the macro scale

    Get PDF
    Achieving food and nutrition security for all in a changing and globalized world remains a critical challenge of utmost importance. The development of solutions benefits from insights derived from modelling and simulating the complex interactions of the agri-food system, which range from global to household scales and transcend disciplinary boundaries. A wide range of models based on various methodologies (from food trade equilibrium to agent-based) seek to integrate direct and indirect drivers of change in land use, environment and socio-economic conditions at different scales. However, modelling such interaction poses fundamental challenges, especially for representing non-linear dynamics and adaptive behaviours. We identify key pieces of the fragmented landscape of food security modelling, and organize achievements and gaps into different contextual domains of food security (production, trade, and consumption) at different spatial scales. Building on in-depth reflection on three core issues of food security – volatility, technology, and transformation – we identify methodological challenges and promising strategies for advancement. We emphasize particular requirements related to the multifaceted and multiscale nature of food security. They include the explicit representation of transient dynamics to allow for path dependency and irreversible consequences, and of household heterogeneity to incorporate inequality issues. To illustrate ways forward we provide good practice examples using meta-modelling techniques, non-equilibrium approaches and behavioural-based modelling endeavours. We argue that further integration of different model types is required to better account for both multi-level agency and cross-scale feedbacks within the food system.</p

    CoronaHiT: high-throughput sequencing of SARS-CoV-2 genomes.

    Get PDF
    We present CoronaHiT, a platform and throughput flexible method for sequencing SARS-CoV-2 genomes (≤ 96 on MinION or > 96 on Illumina NextSeq) depending on changing requirements experienced during the pandemic. CoronaHiT uses transposase-based library preparation of ARTIC PCR products. Method performance was demonstrated by sequencing 2 plates containing 95 and 59 SARS-CoV-2 genomes on nanopore and Illumina platforms and comparing to the ARTIC LoCost nanopore method. Of the 154 samples sequenced using all 3 methods, ≥ 90% genome coverage was obtained for 64.3% using ARTIC LoCost, 71.4% using CoronaHiT-ONT and 76.6% using CoronaHiT-Illumina, with almost identical clustering on a maximum likelihood tree. This protocol will aid the rapid expansion of SARS-CoV-2 genome sequencing globally.The sequencing costs were funded by the COVID-19 Genomics UK (COG-UK) Consortium which is supported by funding from the Medical Research Council (MRC) part of UK Research & Innovation (UKRI), the National Institute of Health Research (NIHR) and Genome Research Limited, operating as the Wellcome Sanger Institute

    Distinct immune cell infiltration patterns in pancreatic ductal adenocarcinoma (PDAC) exhibit divergent immune cell selection and immunosuppressive mechanisms

    Get PDF
    Pancreatic ductal adenocarcinoma has a dismal prognosis. A comprehensive analysis of single-cell multi-omic data from matched tumour-infiltrated CD45+ cells and peripheral blood in 12 patients, and two published datasets, reveals a complex immune infiltrate. Patients have either a myeloid-enriched or adaptive-enriched tumour microenvironment. Adaptive immune cell-enriched is intrinsically linked with highly distinct B and T cell clonal selection, diversification, and differentiation. Using TCR data, we see the largest clonal expansions in CD8 effector memory, senescent cells, and highly activated regulatory T cells which are induced within the tumour from naïve cells. We identify pathways that potentially lead to a suppressive microenvironment, including investigational targets TIGIT/PVR and SIRPA/CD47. Analysis of patients from the APACT clinical trial shows that myeloid enrichment had a shorter overall survival compared to those with adaptive cell enrichment. Strategies for rationale therapeutic development in this disease include boosting of B cell responses, targeting immunosuppressive macrophages, and specific Treg cell depletion approaches
    corecore