27 research outputs found

    A functional analysis of the CREB signaling pathway using HaloCHIP-chip and high throughput reporter assays

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Regulation of gene expression is essential for normal development and cellular growth. Transcriptional events are tightly controlled both spatially and temporally by specific DNA-protein interactions. In this study we finely map the genome-wide targets of the CREB protein across all known and predicted human promoters, and characterize the functional consequences of a subset of these binding events using high-throughput reporter assays. To measure CREB binding, we used HaloCHIP, an antibody-free alternative to the ChIP method that utilizes the HaloTag fusion protein, and also high-throughput promoter-luciferase reporter assays, which provide rapid and quantitative screening of promoters for transcriptional activation or repression in living cells.</p> <p>Results</p> <p>In analysis of CREB genome-wide binding events using a comprehensive DNA microarray of human promoters, we observe for the first time that CREB has a strong preference for binding at bidirectional promoters and unlike unidirectional promoters, these binding events often occur downstream of transcription start sites. Comparison between HaloCHIP-chip and ChIP-chip data reveal this to be true for both methodologies, indicating it is not a bias of the technology chosen. Transcriptional data obtained from promoter-luciferase reporter arrays also show an unprecedented, high level of activation of CREB-bound promoters in the presence of the co-activator protein TORC1.</p> <p>Conclusion</p> <p>These data suggest for the first time that TORC1 provides directional information when CREB is bound at bidirectional promoters and possible pausing of the CREB protein after initial transcriptional activation. Also, this combined approach demonstrates the ability to more broadly characterize CREB protein-DNA interactions wherein not only DNA binding sites are discovered, but also the potential of the promoter sequence to respond to CREB is evaluated.</p

    A Multidimensional Analytical Comparison of Remicade and the Biosimilar Remsima

    Get PDF
    In April 2016, the Food and Drug Administration approved the first biosimilar monoclonal antibody (mAb) – Inflectra/Remsima (Celltrion) based off the original product Remicade (infliximab, Janssen). Biosimilars promise significant cost savings for patients, but the unavoidable differences between innovator and copycat biologics raise questions regarding product interchangeability. In this study, Remicade and Remsima were examined by native mass spectrometry, ion mobility and quantitative peptide mapping. The levels of oxidation, deamidation and mutation of individual amino acids were remarkably similar. We found different levels of C-terminal truncation, soluble protein aggregates and glycation that all likely have a limited clinical impact. Importantly, we identified over 25 glycoforms for each product and observed glycoform population differences, with afucosylated glycans accounting for 19.7% of Remicade and 13,2% of Remsima glycoforms, which translated into a 2-fold reduction in FcγRIIIa binding for Remsima. While this difference was acknowledged in Remsima regulatory filings, our glycoform analysis and receptor binding results appear to be somewhat different from the published values, likely due to methodological differences between laboratories and improved glycoform identification by our laboratory using a peptide map-based method. Our mass spectrometry based analysis provides rapid and robust analytical information vital for biosimilar development. We have demonstrated the utility of our multiple attribute monitoring workflow using the model mAbs Remicade and Remsima, and have provided a template for analysis of future mAb biosimilars

    Estudos visando a síntese de compostos macrocíclicos e heterocíclicos via reações multicomponentes de Ugi

    Get PDF
    Dissertação (mestrado)—Universidade de Brasília, Instituto de Química, Programa de Pós-Graduação em Química, 2017.De modo geral, estruturas cíclicas ocupam um lugar de destaque na química orgânica e rotas sintéticas para a obtenção desta classe de moléculas são altamente desejáveis. É crescente o número de publicações em que reações multicomponente de Ugi são utilizadas visando à síntese de compostos macrocíclicos e heterocíclicos. Desta forma, neste trabalho foram propostas duas estratégias sintéticas distintas, ambas baseadas na reação de Ugi, para a construção de um acervo de compostos cíclicos. A primeira delas, baseada nos preceitos da MiBs (Multiple Multicomponent Macrocyclizations Including Bifunctional Building Blocks), em que componentes bifuncionais são necessários, visou a síntese de compostos macrocíclicos via reações consecutivas de Ugi empregando diácidos carboxílicos preparados a partir de reações de Ugi do tipo U-5C-4CR. A segunda estratégia buscou empregar um aldeído polifuncionalizado, produto de um rearranjo de Claisen em adutos de Morita-Baylis-Hillman, como um dos componentes em reações multicomponentes de Ugi. Esta abordagem permitiu a obtenção de compostos heterocíclicos estruturalmente distintos pela utilização de diferentes estratégias de ciclização.In general, cyclic structures occupy a prominent place in organic chemistry and synthetic routes for obtaining this class of molecules are highly desirable. There is a growing number of publications in which Ugi multi-component reactions are used for the synthesis of macrocyclic and heterocyclic compounds. In this work, two different synthetic strategies were proposed, both based on the Ugi reaction, for the construction of a collection of cyclic compounds. The first one, based on the precepts of the MiBs (Multiple Multicomponent Macrocyclics Including Bifunctional Building Blocks), in which bifunctional components are required, aimed the synthesis of macrocyclic compounds via consecutive Ugi reactions using carboxylic diacids prepared from U- 5C-4CR Ugi variant. The second strategy employ a polyfunctionalized aldehyde, product of a Claisen rearrangement in Morita-Baylis-Hillman adducts, as one of the components in Ugi multicomponent reactions. This approach allowed structurally distinct heterocyclic compounds readly obtained by the use of different cyclization strategies

    A homogeneous bioluminescent immunoassay for parallel characterization of binding between a panel of antibodies and a family of Fcγ receptors

    No full text
    Abstract Fc engineering efforts are increasingly being employed to modulate interaction of antibodies with variety of Fc receptors in an effort to improve the efficacy and safety of the therapeutic antibodies. Among the various Fc receptors, Fc gamma receptors (FcγRs) present on variety of immune cells are especially relevant since they can activate multiple effector functions including antibody dependent cellular cytotoxicity (ADCC) and antibody dependent cellular phagocytosis (ADCP). Depending on the desired mechanism of action (MOA) of the antibody, interactions between Fc domain of the antibody and FcγR (denoted as Fc/FcγR) may need to be enhanced or abolished. Therefore, during the antibody discovery process, biochemical methods are routinely used to measure the affinities of Fc/FcγR interactions. To enable such screening, we developed a plate based, simple to use, homogeneous immunoassays for six FcγRs by leveraging a luminescent protein complementation technology (NanoBiT). An added advantage of the NanoBiT immunoassays is their solution-based format, which minimizes well known surface related artifacts associated with traditional biosensor platforms (e.g., surface plasmon resonance and biolayer interferometry). With NanoBiT FcγRs assays, we demonstrate that assays are specific, report IgG subclass specific affinities and detect modulation in Fc/FcγR interactions in response to the changes in the Fc domain. We subsequently screen a panel of therapeutic antibodies including seven monoclonal antibodies (mAbs) and four polyclonal intravenous immunoglobulin (IVIg) products and highlight the advantages of parallel screening method for developing new antibody therapies

    Reagent for Evaluating Liquid Chromatography–Tandem Mass Spectrometry (LC-MS/MS) Performance in Bottom-Up Proteomic Experiments

    No full text
    We present a novel proteomic standard for assessing liquid chromatography–tandem mass spectrometry (LC-MS/MS) instrument performance, in terms of chromatographic reproducibility and dynamic range within a single LC-MS/MS injection. The peptide mixture standard consists of six peptides that were specifically synthesized to cover a wide range of hydrophobicities (grand average hydropathy (GRAVY) scores of −0.6 to 1.9). A combination of stable isotope labeled amino acids (<sup>13</sup>C and <sup>15</sup>N) were inserted to create five isotopologues. By combining these isotopologues at different ratios, they span four orders of magnitude within each distinct peptide sequence. Each peptide, from lightest to heaviest, increases in abundance by a factor of 10. We evaluate several metrics on our quadrupole orbitrap instrument using the 6 × 5 LC-MS/MS reference mixture spiked into a complex lysate background as a function of dynamic range, including mass measurement accuracy (MMA) and the linear range of quantitation of MS1 and parallel reaction monitoring experiments. Detection and linearity of the instrument routinely spanned three orders of magnitude across the gradient (500 fmol to 0.5 fmol on column) and no systematic trend was observed for MMA of targeted peptides as a function of abundance by analysis of variance analysis (<i>p</i> = 0.17). Detection and linearity of the fifth isotopologue (i.e., 0.05 fmol on column) was dependent on the peptide and instrument scan type (MS1 vs PRM). We foresee that this standard will serve as a powerful method to conduct both intra-instrument performance monitoring/evaluation, technology development, and inter-instrument comparisons

    Mass Spectrometry Compatible Surfactant for Optimized In-Gel Protein Digestion

    No full text
    Identification of proteins resolved by SDS-PAGE depends on robust in-gel protein digestion and efficient peptide extraction, requirements that are often difficult to achieve. A lengthy and laborious procedure is an additional challenge of protein identification in gel. We show here that with the use of the mass spectrometry compatible surfactant sodium 3-((1-(furan-2-yl)­undecyloxy)­carbonylamino)­propane-1-sulfonate, the challenges of in-gel protein digestion are effectively addressed. Peptide quantitation based on stable isotope labeling showed that the surfactant induced 1.5–2 fold increase in peptide recovery. Consequently, protein sequence coverage was increased by 20–30%, on average, and the number of identified proteins saw a substantial boost. The surfactant also accelerated the digestion process. Maximal in-gel digestion was achieved in as little as one hour, depending on incubation temperature, and peptides were readily recovered from gel eliminating the need for postdigestion extraction. This study shows that the surfactant provides an efficient means of improving protein identification in gel and streamlining the in-gel digestion procedure requiring no extra handling steps or special equipment

    The TIP60 complex is a conserved coactivator of HIF1A

    Get PDF
    Hypoxia-inducible factors (HIFs) are critical regulators of the cellular response to hypoxia. Despite their established roles in normal physiology and numerous pathologies, the molecular mechanisms by which they control gene expression remain poorly understood. We report here a conserved role for the TIP60 complex as a HIF1 transcriptional cofactor in Drosophila and human cells. TIP60 (KAT5) is required for HIF1-dependent gene expression in fly cells and embryos and colorectal cancer cells. HIF1A interacts with and recruits TIP60 to chromatin. TIP60 is dispensable for HIF1A association with its target genes but is required for HIF1A-dependent chromatin modification and RNA polymerase II activation in hypoxia. In human cells, global analysis of HIF1A-dependent gene activity reveals that most HIF1A targets require either TIP60, the CDK8-Mediator complex, or both as coactivators for full expression in hypoxia. Thus, HIF1A employs functionally diverse cofactors to regulate different subsets of genes within its transcriptional program.Fil: Perez Perri, Joel Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; ArgentinaFil: Dengler, Verónica L.. Howard Hughes Medical Institute; Estados UnidosFil: Audetat, Audrey. Howard Hughes Medical Institute; Estados UnidosFil: Pandey, Ahwan. Howard Hughes Medical Institute; Estados UnidosFil: Bonner, Elyzabeth A.. State University Of Colorado Boulder; Estados UnidosFil: Urh, Marjeta. Promega Corporation; Estados UnidosFil: Mendez, Jacqui. Promega Corporation; Estados UnidosFil: Daniels, Danette L.. Promega Corporation; Estados UnidosFil: Wappner, Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; ArgentinaFil: Galbraith, Matthew D.. Howard Hughes Medical Institute; Estados UnidosFil: Espinosa, Joaquín M.. Howard Hughes Medical Institute; Estados Unido
    corecore