10 research outputs found
Acute kidney injury in patients treated with immune checkpoint inhibitors
Background: Immune checkpoint inhibitor-associated acute kidney injury (ICPi-AKI) has emerged as an important toxicity among patients with cancer. Methods: We collected data on 429 patients with ICPi-AKI and 429 control patients who received ICPis contemporaneously but who did not develop ICPi-AKI from 30 sites in 10 countries. Multivariable logistic regression was used to identify predictors of ICPi-AKI and its recovery. A multivariable Cox model was used to estimate the effect of ICPi rechallenge versus no rechallenge on survival following ICPi-AKI. Results: ICPi-AKI occurred at a median of 16 weeks (IQR 8-32) following ICPi initiation. Lower baseline estimated glomerular filtration rate, proton pump inhibitor (PPI) use, and extrarenal immune-related adverse events (irAEs) were each associated with a higher risk of ICPi-AKI. Acute tubulointerstitial nephritis was the most common lesion on kidney biopsy (125/151 biopsied patients [82.7%]). Renal recovery occurred in 276 patients (64.3%) at a median of 7 weeks (IQR 3-10) following ICPi-AKI. Treatment with corticosteroids within 14 days following ICPi-AKI diagnosis was associated with higher odds of renal recovery (adjusted OR 2.64; 95% CI 1.58 to 4.41). Among patients treated with corticosteroids, early initiation of corticosteroids (within 3 days of ICPi-AKI) was associated with a higher odds of renal recovery compared with later initiation (more than 3 days following ICPi-AKI) (adjusted OR 2.09; 95% CI 1.16 to 3.79). Of 121 patients rechallenged, 20 (16.5%) developed recurrent ICPi-AKI. There was no difference in survival among patients rechallenged versus those not rechallenged following ICPi-AKI. Conclusions: Patients who developed ICPi-AKI were more likely to have impaired renal function at baseline, use a PPI, and have extrarenal irAEs. Two-thirds of patients had renal recovery following ICPi-AKI. Treatment with corticosteroids was associated with improved renal recovery
Effects of a high-dose 24-h infusion of tranexamic acid on death and thromboembolic events in patients with acute gastrointestinal bleeding (HALT-IT): an international randomised, double-blind, placebo-controlled trial
Background: Tranexamic acid reduces surgical bleeding and reduces death due to bleeding in patients with trauma.
Meta-analyses of small trials show that tranexamic acid might decrease deaths from gastrointestinal bleeding. We
aimed to assess the effects of tranexamic acid in patients with gastrointestinal bleeding.
Methods: We did an international, multicentre, randomised, placebo-controlled trial in 164 hospitals in 15 countries.
Patients were enrolled if the responsible clinician was uncertain whether to use tranexamic acid, were aged above the
minimum age considered an adult in their country (either aged 16 years and older or aged 18 years and older), and
had significant (defined as at risk of bleeding to death) upper or lower gastrointestinal bleeding. Patients were
randomly assigned by selection of a numbered treatment pack from a box containing eight packs that were identical
apart from the pack number. Patients received either a loading dose of 1 g tranexamic acid, which was added to
100 mL infusion bag of 0·9% sodium chloride and infused by slow intravenous injection over 10 min, followed by a
maintenance dose of 3 g tranexamic acid added to 1 L of any isotonic intravenous solution and infused at 125 mg/h
for 24 h, or placebo (sodium chloride 0·9%). Patients, caregivers, and those assessing outcomes were masked to
allocation. The primary outcome was death due to bleeding within 5 days of randomisation; analysis excluded patients
who received neither dose of the allocated treatment and those for whom outcome data on death were unavailable.
This trial was registered with Current Controlled Trials, ISRCTN11225767, and ClinicalTrials.gov, NCT01658124.
Findings: Between July 4, 2013, and June 21, 2019, we randomly allocated 12 009 patients to receive tranexamic acid
(5994, 49·9%) or matching placebo (6015, 50·1%), of whom 11 952 (99·5%) received the first dose of the allocated
treatment. Death due to bleeding within 5 days of randomisation occurred in 222 (4%) of 5956 patients in the
tranexamic acid group and in 226 (4%) of 5981 patients in the placebo group (risk ratio [RR] 0·99, 95% CI 0·82–1·18).
Arterial thromboembolic events (myocardial infarction or stroke) were similar in the tranexamic acid group and
placebo group (42 [0·7%] of 5952 vs 46 [0·8%] of 5977; 0·92; 0·60 to 1·39). Venous thromboembolic events (deep vein
thrombosis or pulmonary embolism) were higher in tranexamic acid group than in the placebo group (48 [0·8%] of
5952 vs 26 [0·4%] of 5977; RR 1·85; 95% CI 1·15 to 2·98).
Interpretation: We found that tranexamic acid did not reduce death from gastrointestinal bleeding. On the basis of our
results, tranexamic acid should not be used for the treatment of gastrointestinal bleeding outside the context of a
randomised trial
Clinical markers of immunotherapy outcomes in advanced sarcoma
Abstract Background Despite immunotherapy’s promise in oncology, its use for sarcoma remains challenging. There are no sarcoma-specific biomarkers for immune checkpoint inhibitors (ICI). Previously, we reported our institutional experience highlighting ICI activity in 29 patients with sarcoma. In this study, we explore responses to ICI based on ICI regimen and other covariates to identify significant clinical factors in advanced sarcoma outcomes. Methods Patients in The Ohio State University Sarcoma Clinics were enrolled in the Sarcoma Retrospective ICI database from January 1, 2015 through November 1, 2021. Data included treatment regimen (single-agent ICI or ICI + combination) along with clinical covariates. ICI + combination was further categorized into ICI + medication, ICI + radiation, ICI + surgery, or ICI + multiple (more than 2 modalities). Statistical analysis included log-rank tests and proportional hazard regression. The primary objective was to evaluate overall survival (OS) and progression-free survival (PFS). Results Of the patients in the database, 135 met inclusion criteria. We demonstrated improved OS in patients treated with ICI + combination (p = 0.014, median 64 weeks), but no effect on PFS (p = 0.471, median 31 weeks). Patients with a documented immune-related adverse event (irAE) of dermatitis had improved OS, but only in the ICI + combination cohort (p = 0.021). Patients who received single-agent ICI and whose change in the neutrophil-to-lymphocyte ratio (NLR) was less than 5 had an improved OS (p = 0.002); this was not seen in patients who received ICI + combination therapy (p = 0.441). There were no differences in OS based on age, gender, histology, or subcategories of ICI + combination. This was not the case for PFS; patients who received any ICI regimen and were younger than 70 had a worse PFS (p = 0.036) compared with their older counterparts in this dataset. Patients who developed an irAE, specifically colitis (p = 0.009), hepatitis (p = 0.048), or dermatitis (p = 0.003), had an improved PFS. There were no differences in PFS based on ICI regimen (or subcategories of ICI + combination), gender, histology, change in NLR, or grade of irAE. Conclusions This retrospective study demonstrates that ICI + combination therapy can improve OS in some patients with advanced sarcoma. This is consistent with our prior results of ICI in sarcoma
PAK4 and NAMPT as Novel Therapeutic Targets in Diffuse Large B-Cell Lymphoma, Follicular Lymphoma, and Mantle Cell Lymphoma
Diffuse large B-cell lymphoma (DLBCL), grade 3b follicular lymphoma (FL), and mantle cell lymphoma (MCL) are aggressive non-Hodgkin’s lymphomas (NHL). Cure rates are suboptimal and novel treatment strategies are needed to improve outcomes. Here, we show that p21-activated kinase 4 (PAK4) and nicotinamide phosphoribosyl transferase (NAMPT) is critical for lymphoma subsistence. Dual targeting of PAK4-NAMPT by the Phase I small molecule KPT-9274 suppressed cell proliferation in DLBCL, FL, and MCL. Growth inhibition was concurrent with apoptosis induction alongside activation of pro-apoptotic proteins and reduced pro-survival markers. We observed NAD suppression, ATP reduction, and consequent cellular metabolic collapse in lymphoma cells due to KPT-9274 treatment. KPT-9274 in combination with standard-of-care chemotherapeutics led to superior inhibition of cell proliferation. In vivo, KPT-9274 could markedly suppress the growth of WSU-DLCL2 (DLBCL), Z-138, and JeKo-1 (MCL) sub-cutaneous xenografts, and a remarkable increase in host life span was shown, with a 50% cure of a systemic WSU-FSCCL (FL) model. Residual tumor analysis confirmed a reduction in total and phosphorylated PAK4 and activation of the pro-apoptotic cascade. This study, using various preclinical experimental models, demonstrates the therapeutic potential of targeting PAK4-NAMPT in DLBCL, FL, and MCL. The orally bioavailable, safe, and efficacious PAK4-NAMPT dual inhibitor KPT-9274 warrants further clinical investigation
Synthesis of some potent immunomodulatory and anti-inflammatory metabolites by fungal transformation of anabolic steroid oxymetholone
<p>Abstract</p> <p>Background</p> <p>Biotransformation of organic compounds by using microbial whole cells provides an efficient approach to obtain novel analogues which are often difficult to synthesize chemically. In this manuscript, we report for the first time the microbial transformation of a synthetic anabolic steroidal drug, oxymetholone, by fungal cell cultures.</p> <p>Results</p> <p>Incubation of oxymetholone (<b>1</b>) with <it>Macrophomina phaseolina</it>, <it>Aspergillus niger</it>, <it>Rhizopus stolonifer</it>, and <it>Fusarium lini</it> produced 17β-hydroxy-2-(hydroxy-methyl)-17α-methyl-5α-androstan-1-en-3-one (<b>2</b>), 2α,17α-di(hydroxyl-methyl)-5α-androstan-3β,17β-diol (<b>3</b>), 17α-methyl-5α-androstan-2α,3β,17β-triol (<b>4</b>), 17β-hydroxy-2-(hydroxymethyl)-17α-methyl-androst-1,4-dien-3-one (<b>5</b>), 17β-hydroxy-2α-(hydroxy-methyl)-17α-methyl-5α-androstan-3-one (<b>6</b>), and 2α-(hydroxymethyl)-17α-methyl-5α-androstan-3β-17β-diol (<b>7</b>). Their structures were deduced by spectral analyses, as well as single-crystal X-ray diffraction studies. Compounds <b>2</b>–<b>5</b> were identified as the new metabolites of <b>1</b>. The immunomodulatory, and anti-inflammatory activities and cytotoxicity of compounds <b>1</b>–<b>7</b> were evaluated by observing their effects on T-cell proliferation, reactive oxygen species (ROS) production, and normal cell growth in MTT assays, respectively. These compounds showed immunosuppressant effect in the T-cell proliferation assay with IC<sub>50</sub> values between 31.2 to 2.7 μg/mL, while the IC<sub>50</sub> values for ROS inhibition, representing anti-inflammatory effect, were in the range of 25.6 to 2.0 μg/mL. All the compounds were found to be non-toxic in a cell-based cytotoxicity assay.</p> <p>Conclusion</p> <p>Microbial transformation of oxymetholone (<b>1</b>) provides an efficient method for structural transformation of <b>1</b>. The transformed products were obtained as a result of <it>de novo</it> stereoselective reduction of the enone system, isomerization of double bond, insertion of double bond and hydroxylation. The transformed products, which showed significant immunosuppressant and anti-inflammatory activities, can be further studied for their potential as novel drugs.</p
Recommended from our members
Acute kidney injury in patients treated with immune checkpoint inhibitors
Background Immune checkpoint inhibitor-associated acute kidney injury (ICPi- AKI) has emerged as an important toxicity among patients with cancer.Methods We collected data on 429 patients with ICPi- AKI and 429 control patients who received ICPis contemporaneously but who did not develop ICPi- AKI from 30 sites in 10 countries. Multivariable logistic regression was used to identify predictors of ICPi- AKI and its recovery. A multivariable Cox model was used to estimate the effect of ICPi rechallenge versus no rechallenge on survival following ICPi-AKI. Results ICPi- AKI occurred at a median of 16 weeks (IQR 8-32) following ICPi initiation. Lower baseline estimated glomerular filtration rate, proton pump inhibitor (PPI) use, and extrarenal immune-related adverse events (irAEs) were each associated with a higher risk of ICPi- AKI. Acute tubulointerstitial nephritis was the most common lesion on kidney biopsy (125/151 biopsied patients [82.7%]). Renal recovery occurred in 276 patients (64.3%) at a median of 7 weeks (IQR 3-10) following ICPi- AKI. Treatment with corticosteroids within 14 days following ICPi- AKI diagnosis was associated with higher odds of renal recovery (adjusted OR 2.64; 95% CI 1.58 to 4.41). Among patients treated with corticosteroids, early initiation of corticosteroids (within 3 days of ICPi- AKI) was associated with a higher odds of renal recovery compared with later initiation (more than 3 days following ICPi- AKI) (adjusted OR 2.09; 95% CI 1.16 to 3.79). Of 121 patients rechallenged, 20 (16.5%) developed recurrent ICPi- AKI. There was no difference in survival among patients rechallenged versus those not rechallenged following ICPiAKI.Conclusions Patients who developed ICPi- AKI were more likely to have impaired renal function at baseline, use a PPI, and have extrarenal irAEs. Two-thirds of patients had renal recovery following ICPi- AKI. Treatment with corticosteroids was associated with improved renal recovery
Recommended from our members
Acute kidney injury in patients treated with immune checkpoint inhibitors.
Immune checkpoint inhibitor-associated acute kidney injury (ICPi-AKI) has emerged as an important toxicity among patients with cancer. We collected data on 429 patients with ICPi-AKI and 429 control patients who received ICPis contemporaneously but who did not develop ICPi-AKI from 30 sites in 10 countries. Multivariable logistic regression was used to identify predictors of ICPi-AKI and its recovery. A multivariable Cox model was used to estimate the effect of ICPi rechallenge versus no rechallenge on survival following ICPi-AKI. ICPi-AKI occurred at a median of 16 weeks (IQR 8-32) following ICPi initiation. Lower baseline estimated glomerular filtration rate, proton pump inhibitor (PPI) use, and extrarenal immune-related adverse events (irAEs) were each associated with a higher risk of ICPi-AKI. Acute tubulointerstitial nephritis was the most common lesion on kidney biopsy (125/151 biopsied patients [82.7%]). Renal recovery occurred in 276 patients (64.3%) at a median of 7 weeks (IQR 3-10) following ICPi-AKI. Treatment with corticosteroids within 14 days following ICPi-AKI diagnosis was associated with higher odds of renal recovery (adjusted OR 2.64; 95% CI 1.58 to 4.41). Among patients treated with corticosteroids, early initiation of corticosteroids (within 3 days of ICPi-AKI) was associated with a higher odds of renal recovery compared with later initiation (more than 3 days following ICPi-AKI) (adjusted OR 2.09; 95% CI 1.16 to 3.79). Of 121 patients rechallenged, 20 (16.5%) developed recurrent ICPi-AKI. There was no difference in survival among patients rechallenged versus those not rechallenged following ICPi-AKI. Patients who developed ICPi-AKI were more likely to have impaired renal function at baseline, use a PPI, and have extrarenal irAEs. Two-thirds of patients had renal recovery following ICPi-AKI. Treatment with corticosteroids was associated with improved renal recovery
Shorter versus longer corticosteroid duration and recurrent immune checkpoint inhibitor-associated AKI
Background Corticosteroids are the mainstay of treatment for immune checkpoint inhibitor-associated acute kidney injury (ICPi-AKI), but the optimal duration of therapy has not been established. Prolonged use of corticosteroids can cause numerous adverse effects and may decrease progression-free survival among patients treated with ICPis. We sought to determine whether a shorter duration of corticosteroids was equally efficacious and safe as compared with a longer duration.Methods We used data from an international multicenter cohort study of patients diagnosed with ICPi-AKI from 29 centers across nine countries. We examined whether a shorter duration of corticosteroids (28 days or less) was associated with a higher rate of recurrent ICPi-AKI or death within 30 days following completion of corticosteroid treatment as compared with a longer duration (29–84 days).Results Of 165 patients treated with corticosteroids, 56 (34%) received a shorter duration of treatment and 109 (66%) received a longer duration. Patients in the shorter versus longer duration groups were similar with respect to baseline and ICPi-AKI characteristics. Five of 56 patients (8.9%) in the shorter duration group and 12 of 109 (11%) in the longer duration group developed recurrent ICPi-AKI or died (p=0.90). Nadir serum creatinine in the first 14, 28, and 90 days following completion of corticosteroid treatment was similar between groups (p=0.40, p=0.56, and p=0.89, respectively).Conclusion A shorter duration of corticosteroids (28 days or less) may be safe for patients with ICPi-AKI. However, the findings may be susceptible to unmeasured confounding and further research from randomized clinical trials is needed
Effects of a high-dose 24-h infusion of tranexamic acid on death and thromboembolic events in patients with acute gastrointestinal bleeding (HALT-IT): an international randomised, double-blind, placebo-controlled trial
BackgroundTranexamic acid reduces surgical bleeding and reduces death due to bleeding in patients with trauma. Meta-analyses of small trials show that tranexamic acid might decrease deaths from gastrointestinal bleeding. We aimed to assess the effects of tranexamic acid in patients with gastrointestinal bleeding.MethodsWe did an international, multicentre, randomised, placebo-controlled trial in 164 hospitals in 15 countries. Patients were enrolled if the responsible clinician was uncertain whether to use tranexamic acid, were aged above the minimum age considered an adult in their country (either aged 16 years and older or aged 18 years and older), and had significant (defined as at risk of bleeding to death) upper or lower gastrointestinal bleeding. Patients were randomly assigned by selection of a numbered treatment pack from a box containing eight packs that were identical apart from the pack number. Patients received either a loading dose of 1 g tranexamic acid, which was added to 100 mL infusion bag of 0·9% sodium chloride and infused by slow intravenous injection over 10 min, followed by a maintenance dose of 3 g tranexamic acid added to 1 L of any isotonic intravenous solution and infused at 125 mg/h for 24 h, or placebo (sodium chloride 0·9%). Patients, caregivers, and those assessing outcomes were masked to allocation. The primary outcome was death due to bleeding within 5 days of randomisation; analysis excluded patients who received neither dose of the allocated treatment and those for whom outcome data on death were unavailable. This trial was registered with Current Controlled Trials, ISRCTN11225767, and ClinicalTrials.gov, NCT01658124.FindingsBetween July 4, 2013, and June 21, 2019, we randomly allocated 12 009 patients to receive tranexamic acid (5994, 49·9%) or matching placebo (6015, 50·1%), of whom 11 952 (99·5%) received the first dose of the allocated treatment. Death due to bleeding within 5 days of randomisation occurred in 222 (4%) of 5956 patients in the tranexamic acid group and in 226 (4%) of 5981 patients in the placebo group (risk ratio [RR] 0·99, 95% CI 0·82–1·18). Arterial thromboembolic events (myocardial infarction or stroke) were similar in the tranexamic acid group and placebo group (42 [0·7%] of 5952 vs 46 [0·8%] of 5977; 0·92; 0·60 to 1·39). Venous thromboembolic events (deep vein thrombosis or pulmonary embolism) were higher in tranexamic acid group than in the placebo group (48 [0·8%] of 5952 vs 26 [0·4%] of 5977; RR 1·85; 95% CI 1·15 to 2·98).InterpretationWe found that tranexamic acid did not reduce death from gastrointestinal bleeding. On the basis of our results, tranexamic acid should not be used for the treatment of gastrointestinal bleeding outside the context of a randomised trial.</div