25 research outputs found

    Characterization of a Novel Compound That Stimulates STING-Mediated Innate Immune Activity in an Allele-Specific Manner.

    Get PDF
    The innate immune response to cytosolic DNA involves transcriptional activation of type I interferons (IFN-I) and proinflammatory cytokines. This represents the culmination of intracellular signaling pathways that are initiated by pattern recognition receptors that engage DNA and require the adaptor protein Stimulator of Interferon Genes (STING). These responses lead to the generation of cellular and tissue states that impair microbial replication and facilitate the establishment of long-lived, antigen-specific adaptive immunity. Ultimately this can lead to immune-mediated protection from infection but also to the cytotoxic T cell-mediated clearance of tumor cells. Intriguingly, pharmacologic activation of STING-dependent phenotypes is known to enhance both vaccine-associated immunogenicity and immune-based anti-tumor therapies. Unfortunately, the STING protein exists as multiple variant forms in the human population that exhibit differences in their reactivity to chemical stimuli and in the intensity of molecular signaling they induce. In light of this, STING-targeting drug discovery efforts require an accounting of protein variant-specific activity. Herein we describe a small molecule termed M04 that behaves as a novel agonist of human STING. Importantly, we find that the molecule exhibits a differential ability to activate STING based on the allelic variant examined. Furthermore, while M04 is inactive in mice, expression of human STING in mouse cells rescues reactivity to the compound. Using primary human cells in ex vivo assays we were also able to show that M04 is capable of simulating innate responses important for adaptive immune activation such as cytokine secretion, dendritic cell maturation, and T cell cross-priming. Collectively, this work demonstrates the conceivable utility of a novel agonist of human STING both as a research tool for exploring STING biology and as an immune potentiating molecule

    A Novel Agonist of the TRIF Pathway Induces a Cellular State Refractory to Replication of Zika, Chikungunya, and Dengue Viruses.

    Get PDF
    The ongoing concurrent outbreaks of Zika, Chikungunya, and dengue viruses in Latin America and the Caribbean highlight the need for development of broad-spectrum antiviral treatments. The type I interferon (IFN) system has evolved in vertebrates to generate tissue responses that actively block replication of multiple known and potentially zoonotic viruses. As such, its control and activation through pharmacological agents may represent a novel therapeutic strategy for simultaneously impairing growth of multiple virus types and rendering host populations resistant to virus spread. In light of this strategy\u27s potential, we undertook a screen to identify novel interferon-activating small molecules. Here, we describe 1-(2-fluorophenyl)-2-(5-isopropyl-1,3,4-thiadiazol-2-yl)-1,2-dihydrochromeno[2,3

    Ethyl Pyruvate Modulates Murine Dendritic Cell Activation and Survival Through Their Immunometabolism

    Get PDF
    Attenuating the innate immunity activation could ameliorate inflammation and disease in settings such as transplant rejection or autoimmunity. Recently, a pivotal role for metabolic re-programming in TLR-induced dendritic cell (DC) activation has emerged. Ethyl pyruvate (EP), a pyruvate derivative, possesses anti-inflammatory properties in vitro and in animal models of disease. However, its effects on DCs remain elusive. We found that EP attenuated LPS-induced activation of murine GM-CSF bone marrow-derived dendritic cells (DCs) in vitro, reducing pro-inflammatory cytokine and IL-10 production, costimulatory molecule and MHC expression, the type I Interferon (IFN-I) response, the LPS-induced cell death, and the ability of DCs to stimulate allogeneic T cells. DC activation induced by TLR7 and TLR9 ligands was also suppressed by EP in vitro. Finally, EP decreased TLR-induced activation stimulated in vivo in conventional DCs and inflammatory monocytes. Investigating EP mechanisms, we found that EP decreased glycolysis and mitochondrial respiration, upon and in absence of TLR stimulation, by reducing ERK, AKT, and nitric oxide (NO) activation. These results indicate that EP inhibits most of the DC biological responses to TLR triggering, altering the metabolic reprogramming necessary for DC activation

    Conventional DCs from Male and Female Lupus-Prone B6.NZM Sle1/Sle2/Sle3 Mice Express an IFN Signature and Have a Higher Immunometabolism That Are Enhanced by Estrogen

    No full text
    Type I interferons (IFN) are pathogenic in systemic lupus erythematosus (SLE) and were proposed to control the immunometabolism of dendritic cells (DCs). We previously reported that DCs from female lupus-prone mice constitutively overexpress IFN-responsive genes resembling the IFN signature found in SLE patients. As SLE has higher incidence in women than men, more so in women of reproductive age, estrogens are suggested to affect lupus pathogenesis. We investigated the effects of sex and estrogens on the IFN signature in conventional GM-CSF-bone marrow-derived DCs (cDCs), from male and female Triple Congenic B6.NZM.Sle1/Sle2/Sle3 (TCSle) lupus-prone mice or from wild-type C57BL/6 mice, generated with titrations of 17-beta-estradiol (E2). We found that cDCs from prediseased TCSle male mice express the IFN signature as female TCSle cDCs do. Estrogens are necessary but not sufficient to express this IFN signature, but high doses of E2 can compensate for other steroidal components. E2 stimulation, regardless of sex, modulates type I IFN-dependent and type I IFN-independent activation of cDCs in response to TLR stimulation. Finally, we found that TCSle cDCs from both sexes have elevated markers of immunometabolism and estrogens enhance the metabolic pathways in cDCs, suggesting a mechanistic link between estrogens, immunometabolism, and the IFN signature in lupus

    Alterations in Humoral Immunity After Partial Versus Total Tonsillectomy: A Pilot Study and Systematic Review of Literature

    No full text
    Background: The palatine tonsils are secondary lymphoid organs, important in sampling antigens directly from the epithelial surfaces. They produce antibodies locally and distally through their migrating B cells. Objectives: The aim of this study was to compare the changes in serum and saliva immunoglobulin (Ig) levels after total vs. partial tonsillectomy and also to systematically review the literature regarding the changes in humoral immunity following tonsillar surgery. Patients and Methods: Children with obstructive tonsils were recruited in a pilot study and randomized to undergo total or partial tonsillectomy. Blood and saliva samples were obtained immediately preoperatively and within 3 months postoperatively, to measure serum Ig (G, M and A) and saliva secretory IgA concentrations. Patients’ clinical history was reviewed at one year postoperatively. Systematic literature review regarding the effects of tonsillar surgery on humoral immunity was performed, using Medline, Embase and Cochrane. Results: Nineteen patients completed the study (11 partial, 8 total). No statistically significant changes noted in the serum Ig’s level in both groups, except for IgM which increased (P = 0.018) after partial tonsillectomy, mainly in males (P = 0.04), and in those aged 5 years and older (P = 0.02). There was noticeable decrease in susceptibility to infections. Four out of 30 studies (406 out of 1796 patients) showed decrease in some elements of the humoral immunity or suspected a negative impact of tonsillectomy on the immune system. Conclusions: Partial tonsillectomy does not seem to offer an immunological advantage over total tonsillectomy. The literature does not imply a significant negative impact of tonsillectomy on the humoral immune system

    Bisphenol A Does Not Mimic Estrogen in the Promotion of the In Vitro Response of Murine Dendritic Cells to Toll-Like Receptor Ligands

    No full text
    Sex hormones affect immune responses and might promote autoimmunity. Endocrine disrupting chemicals such as bisphenol A (BPA) may mimic their immune effects. Conventional dendritic cells (cDCs) are pivotal initiators of immune responses upon activation by danger signals coming from pathogens or distressed tissues through triggering of the Toll-like receptors (TLRs). We generated in vitro murine cDCs in the absence of estrogens and measured the effects of exogenously added estrogen or BPA on their differentiation and activation by the TLR ligands LPS and CpG. Estrogen enhanced the differentiation of GM-CSF-dependent cDCs from bone marrow precursors in vitro, and the selective estrogen receptor modulators (SERMs) tamoxifen and fulvestrant blocked these effects. Moreover, estrogen augmented the upregulation of costimulatory molecules and proinflammatory cytokines (IL-12p70 and TNFα) upon stimulation by TLR9 ligand CpG, while the response to LPS was less estrogen-dependent. These effects are partially explained by an estrogen-dependent regulation of TLR9 expression. BPA did not promote cDC differentiation nor activation upon TLR stimulation. Our results suggest that estrogen promotes immune responses by increasing DC activation, with a preferential effect on TLR9 over TLR4 stimulation, and highlight the influence of estrogens in DC cultures, while BPA does not mimic estrogen in the DC functions that we tested
    corecore