1 research outputs found
Ultra-Strong Light-Matter Coupling in Deeply Subwavelength THz LC Resonators
International audienceThe ultra-strong light-matter coupling regime has been demonstrated in a novel three-dimensional inductor-capacitor (LC) circuit resonator, embedding a semiconductor two-dimensional electron gas in the capacitive part. The fundamental resonance of the LC circuit interacts with the intersubband plasmon excitation of the electron gas at ω c = 3.3 THz with a normalized coupling strength 2Ω R /ω c = 0.27. Light matter interaction is driven by the quasi-static electric field in the capacitors, and takes place in a highly subwavelength effective volume V eff = 10 −6 λ 3 0. This enables the observation of the ultra-strong light-matter coupling with 2.4 × 10 3 electrons only. Notably, our fabrication protocol can be applied to the integration of a semiconductor region into arbitrary nano-engineered three dimensional meta-atoms. This circuit architecture can be considered the building block of metamaterials for ultra-low dark current detectors