77 research outputs found

    RACEWALKING AND NORMAL WALKING ANALYSIS

    Get PDF
    INTRODUCTION: The purpose of the present study was to observe biomechanical variations in racewalking, starting from normal walking and continuing on up to a maximum racewalking performance supported by the athlete. Tests were carried out on a women’s racewalking team who represents Santa Catarina State at national competitions in Brazil. A GaitwayTM instrumented treadmill system was used to verify the differences between normal walking and racewalking. A few studies have been made of race walkers. Some physiological aspects indicated that the speed at which racewalking and running become equally efficient is similar to the crossover speed for conventional walking and running (Hagberg & Coyle, 1984). Another important study was done by Morgan & Martin (1986), who showed the effects of stride length alterations on racewalking economy. Their results support the hypothesis that trained subjects select locomotion patterns that are nearly optimal in terms of the aerobic demands. Cairns et al. (1986) determined that the racewalking gait exhibits some biomechanical characteristics which are different from the walking gait or running. Recently, Brisswalter et al. (1996) suggested that in well trained walkers the energy cost of walking increases with exercise duration, but walkers are able to maintain the same stride duration after the test when treadmill speed is controlled

    Rapid age-grading and species identification of natural mosquitoes for malaria surveillance

    Get PDF
    The malaria parasite, which is transmitted by several Anopheles mosquito species, requires more time to reach its human-transmissible stage than the average lifespan of mosquito vectors. Monitoring the species-specific age structure of mosquito populations is critical to evaluating the impact of vector control interventions on malaria risk. We present a rapid, cost-effective surveillance method based on deep learning of mid-infrared spectra of mosquito cuticle that simultaneously identifies the species and age class of three main malaria vectors in natural populations. Using spectra from over 40, 000 ecologically and genetically diverse An. gambiae, An. arabiensis, and An. coluzzii females, we develop a deep transfer learning model that learns and predicts the age of new wild populations in Tanzania and Burkina Faso with minimal sampling effort. Additionally, the model is able to detect the impact of simulated control interventions on mosquito populations, measured as a shift in their age structures. In the future, we anticipate our method can be applied to other arthropod vector-borne diseases

    Photonic molecules and spectral engineering

    Full text link
    This chapter reviews the fundamental optical properties and applications of pho-tonic molecules (PMs) - photonic structures formed by electromagnetic coupling of two or more optical microcavities (photonic atoms). Controllable interaction between light and matter in photonic atoms can be further modified and en-hanced by the manipulation of their mutual coupling. Mechanical and optical tunability of PMs not only adds new functionalities to microcavity-based optical components but also paves the way for their use as testbeds for the exploration of novel physical regimes in atomic physics and quantum optics. Theoretical studies carried on for over a decade yielded novel PM designs that make possible lowering thresholds of semiconductor microlasers, producing directional light emission, achieving optically-induced transparency, and enhancing sensitivity of microcavity-based bio-, stress- and rotation-sensors. Recent advances in material science and nano-fabrication techniques make possible the realization of optimally-tuned PMs for cavity quantum electrodynamic experiments, classical and quantum information processing, and sensing.Comment: A review book chapter: 29 pages, 19 figure

    Erratum: Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks for 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017

    Get PDF
    Interpretation: By quantifying levels and trends in exposures to risk factors and the resulting disease burden, this assessment offers insight into where past policy and programme efforts might have been successful and highlights current priorities for public health action. Decreases in behavioural, environmental, and occupational risks have largely offset the effects of population growth and ageing, in relation to trends in absolute burden. Conversely, the combination of increasing metabolic risks and population ageing will probably continue to drive the increasing trends in non-communicable diseases at the global level, which presents both a public health challenge and opportunity. We see considerable spatiotemporal heterogeneity in levels of risk exposure and risk-attributable burden. Although levels of development underlie some of this heterogeneity, O/E ratios show risks for which countries are overperforming or underperforming relative to their level of development. As such, these ratios provide a benchmarking tool to help to focus local decision making. Our findings reinforce the importance of both risk exposure monitoring and epidemiological research to assess causal connections between risks and health outcomes, and they highlight the usefulness of the GBD study in synthesising data to draw comprehensive and robust conclusions that help to inform good policy and strategic health planning
    corecore