9 research outputs found

    Formation of Marketing Strategy at Environmentally Determined Enterprise

    Get PDF
    Actuality of this research is caused by necessity for implementation into practice of economic activities of Russian enterprises of modern methods of ecological marketing which should adequately reflect ecological aspects of enterprise’s activity of its operative component (preparation and implementation of the process of production and provision of services) and of the sphere of management (including cooperation of enterprise with external environment as to problems of ecology and its obligations, including waste recovery), for the purpose of maximal reduction of possible negative consequences for ecosystem and human. Under modern market conditions, ecological marketing is gaining larger significance in the formation and implementation of functions of ecological policy of enterprise, which is caused by increase of responsibility of producers of goods and services before consumers and society in whole. Ecological marketing gives the possibility not only to implement the process of strategic target setting but also shows solutions to many difficulties related do emergence of ecological risk. At that, perceiving of ecological risk by society largely determines the relation of specific enterprise (or type of technology, products, or services) in no lesser way than actual characteristic of influence of production process. This circumstance, which characterizes the actuality and importance of a problem, determined the topic of this article. The conducted research pursued scientific & practical goals which correspond to tasks of formation of modern marketing strategies at environmentally determined enterprise. DOI: 10.5901/mjss.2015.v6n5s1p36

    Involvement of Nitric Oxide in Methyl Jasmonate-Mediated Regulation of Water Metabolism in Wheat Plants under Drought Stress

    No full text
    Drought is a serious challenge that causes significant crop loss worldwide. The developmental processes of plants are regulated by phytohormones and signaling molecules that crosstalk together in signaling cascades. We suppose that nitric oxide (NO) is a secondary messenger of the JAs signaling pathway, as 10−7 M methyl jasmonate (MeJA) pretreatment regulates NO accumulation in wheat plants under drought stress, modulated by 12% polyethylene glycol (PEG), and in control plants. This study aimed to compare 2 × 10−4 M nitric oxide donor sodium nitroprusside (SNP) and MeJA pretreatments in regulating growth and water balance parameters at the vulnerable initial first-leaf stage of wheat growth. The application of 12% PEG decreased transpiration intensity twofold, relative water content (RWC) by 7–9%, and osmotic potential of cell sap by 33–40% compared with those of control plants. Under drought, MeJA- and SNP-pretreated plants decreased transpiration intensity by 20–25%, RWC by 3–4%, and osmotic potential of cell sap by 16–21% compared with those of control plants, and enhanced the proline content by 25–55% compared with MeJA- and SNP-untreated plants. Our results suggest that pretreatment with MeJA as well as SNP could mitigate drought stress in wheat plants. Similarities in MeJA- and SNP-induced shifts in plant water balance suggested that NO is a mediator of MeJA-induced regulation of wheat water content during water deficit

    Interpolymer Complexes of Poly(methacryloyloxyethyl phosphorylcholine) and Polyacids

    No full text
    It has been shown that macromolecules of poly(methacryloyloxyethyl phosphorylcholine) can form hydrogen bonded interpolymer complexes with homo- and copolymers of carboxylic acids and with poly(vinylphosphonic) acid in aqueous solutions. Polarized luminescence and IR spectroscopy were applied in the investigation. Nanosecond relaxation times characterizing the mobility of the chain fragments for the initial luminescent labeled polymers were determined and their changes by a factor of 2–50 were established during the formation of an interpolymer complex. Hydrogen bonds play a dominant role in the formation of these complexes. Hydrophobic interactions serve as an additional stabilizing factor. It is established that poly(methacryloyloxyethyl phosphorylcholine)/poly(vinylphosphonic acid) complex forms a looser structure in comparison with those for polycarboxylic acids as result of electrostatic repulsion between charged groups

    Synthesis of Water-Soluble Copolymers of N-vinylpyrrolidone with N-vinyldithiocarbamate as Multidentate Polymeric Chelation Systems and Their Complexes with Indium and Gallium

    No full text
    Dithiocarbamate (DTC) derivatives of N-vinylpyrrolidone-N-vinylamine (VP–VA) copolymers were synthesized via reaction between the copolymers and carbon disulfide in alkaline medium; molecular masses of the products were 12 and 29 kDa; the VP:VDTC ratios were 94:6 and 83:17 mol.%. Complexation between the obtained DTC derivatives and metal ions (indium and gallium) was investigated. It was demonstrated that metal–DTC ligand complexes with 1:3 ratio between components were formed. Gallium metal–polymer complexes (MPC) were unstable in solution. Individual indium MPC were isolated and characterized by spectral and chromatographic methods. Unlike similar gallium MPC, they appeared to be stable in histidine challenge reaction

    The DIMA Network: bridging boundaries via shared scientific interests

    No full text
    The DIMA Network (Developing Innovative Multi-proxy Analyses-in Siberia and the Russian Far East (SRFE)) started from a small nucleus of palaeoenvironmental researchers in the UK and SRFE at a workshop in 2008 and currently includes researchers from over 25 institutions. The mutual interest in creating long-Term records of environmental change was rekindled during workshops in Magadan (2018), Tomsk (2018) and Southampton (2019). These events were organised to connect researchers from the UK and SRFE with these aims: (1) provide training in new techniques and methods, (2) facilitate knowledge transfer about local sites and conditions, (3) stimulate large-scale collaborative projects across SRFE and (4) inspire a new generation of palaeoenvironmental researchers.</p

    Holmium-Containing Metal-Organic Frameworks as Modifiers for PEBA-Based Membranes

    No full text
    Recently, there has been an active search for new modifiers to create hybrid polymeric materials for various applications, in particular, membrane technology. One of the topical modifiers is metal-organic frameworks (MOFs), which can significantly alter the characteristics of obtained mixed matrix membranes (MMMs). In this work, new holmium-based MOFs (Ho-MOFs) were synthesized for polyether block amide (PEBA) modification to develop novel MMMs with improved properties. The study of Ho-MOFs, polymers and membranes was carried out by methods of X-ray phase analysis, scanning electron and atomic force microscopies, Fourier transform infrared spectroscopy, low-temperature nitrogen adsorption, dynamic and kinematic viscosity, static and dynamic light scattering, gel permeation chromatography, thermogravimetric analysis and contact angle measurements. Synthesized Ho-MOFs had different X-ray structures, particle forms and sizes depending on the ligand used. To study the effect of Ho-MOF modifier on membrane transport properties, PEBA/Ho-MOFs membrane retention capacity was evaluated in vacuum fourth-stage filtration for dye removal (Congo Red, Fuchsin, Glycine thymol blue, Methylene blue, Eriochrome Black T). Modified membranes demonstrated improved flux and rejection coefficients for dyes containing amino groups: Congo Red, Fuchsin (PEBA/Ho-1,3,5-H3btc membrane possessed optimal properties: 81% and 68% rejection coefficients for Congo Red and Fuchsin filtration, respectively, and 0.7 L/(m2s) flux)
    corecore