5 research outputs found
Drama-Based Activities for STEM Education: Encouraging Scientific Aspirations and Debunking Stereotypes in Secondary School Students in Spain and the UK
This study presents findings from testing an innovative student-centred drama-based teaching methodology for Science, Technology, Engineering and Maths (STEM) disciplines for secondary school students. The method, based on performances, was tested in two case studies, Spain and the UK, on a sample of 2,089 students. These performances have been shown to be an effective way of generating a two-way dialogue between students and researchers, and prompting student reflections about researchers as role models, gender inequalities in science, and ethical issues in STEM careers and scientific research. Furthermore, they have enhanced young people's positive attitudes and interest in science, scientists and scientific careers and have debunked science-related stereotypes. This indicates that the performances evaluated in this study are supporting the aspirations of young people, but not limiting their inclination to critically assess the relative benefits and risks of scientific development for themselves
An oxygen-sensitive toxin-antitoxin system
The Hha and TomB proteins from Escherichia coli form an oxygen-dependent toxin-antitoxin (TA) system. Here we show that YmoB, the Yersinia orthologue of TomB, and its single cysteine variant [C117S]YmoB can replace TomB as antitoxins in E. coli. In contrast to other TA systems, [C117S]YmoB transiently interacts with Hha (rather than forming a stable complex) and enhances the spontaneous oxidation of the Hha conserved cysteine residue to a -SOxH- containing species (sulfenic, sulfinic or sulfonic acid), which destabilizes the toxin. The nuclear magnetic resonance structure of [C117S]YmoB and the homology model of TomB show that the two proteins form a four-helix bundle with a conserved buried cysteine connected to the exterior by a channel with a diameter comparable to that of an oxygen molecule. The Hha interaction site is located on the opposite side of the helix bundle
Studies of TomB/YmoB family of proteins: biofilm regulators in enteric bacteria
[cat]1. Introducció Seguint els treballs previs realitzats al laboratori del professor Miquel Pons, aquest projecte s’ha focalitzat en els estudis funcionals i estructurals de la proteïna YmoB. Aquesta proteïna de Yersinia spp. Comparteix una elevada homologia de seqüència amb la proteïna TomB de Escherichia coli. Homòlegs de la famÃlia de proteïnes TomB/YmoB estan presents en els bacteris entèrics sense que existeixi homologia de seqüència obvia amb altres famÃlies de proteïnes ni que es conegui l’estructura tridimensional de cap d’elles. Aixà doncs, aquesta tesi doctoral s’ha focalitzat en la obtenció de l’estructura tridimensional mitjançant Ressonà ncia Magnètica Nuclear (RMN) de la proteïna YmoB, en la realització d’estudis funcionals de les proteïnes TomB/YmoB i la valdació funcional de la construcció utilitzada en els experiments de RMN y finalment en l’estudi dels processos d’oxidació cisteÃnica i oligomeritzacio que semblen regir la funcionalitat biològica de la famÃlia de proteïnes TomB/YmoB. 2. Resum dels resultats obtinguts Els principals resultats obtinguts en aquesta tesi doctoral són: 1. Obtenció d’una mostra óptima per a la realització dels experiments de RMN; mutant [C117S] YmoB a 1.4mM, 20mM de [Na2HPO4 + NaH2PO4], 150mM NaCl, 0.2mM EDTA, 1mM TCEP, 0.01% NaN3, pH=7.00. 2. Demostració de la funció com a Toxina-Antitoxina del parell Hha-TomB, sent Hha la toxina i TomB l’antitoxina, en cèl•lules E. Coli planctòniques i en biofilms. Complementació en E. Coli de la funció com a antitoxina de TomB per part de Ymo i de [C117S] YmoB en cèl•lules planctòniques i en biofilms. 3. Resolució de l’estructura tridimensional de la construcció [C117S] YmoB. La proteïna forma un feix de quatre hèlix i la seva superfÃcie electrostà tica es majorità riament negativa, mostrant dues à rees ben definides amb cà rrega positiva. 4. Identificació de tres possibles espècies de YmoB com a forma activa d’antitoxina; YmoB en la seva forma monomèrica reduïda, dÃmers (o formes oligomèriques majors) de YmoB y YmoB amb la cisteïna 18 oxidada en forma d’à cid sulfènic.[eng]1. Introduction TomB/YmoB family of proteins was proposed as antitoxins of Hha/YmoA family of proteins. Toxin antitoxin (TA) systems are involved in the regulation of biofilm in bacteria, among other functions. Hha-TomB proteins were related with the regulation of biofilm formation and dispersion. This PhD thesis was focused on solving the 3D structure of a member of TomB/YmoB family of proteins using Nuclear Magnetic Resonance (NMR), on the realization of functional studies of TomB/YmoB proteins and on the study the oxidation and oligomerization process that seems to control the biological function of the TomB/YmoB family of proteins. 2. Optimization of NMR sample parameters to elucidate the 3D structure of a member of TomB family of proteins by NMR Compared to other spectroscopic techniques NMR is a relatively insensitive method. To determine the structure of proteins multidimensional experiments require long acquisition times and protein concentrations at the millimolar (mM) range. Optimization of the protein constructs to achieve the required solubility and stability to obtain good quality NMR spectra was the first, non-trivial step for 3D protein structure elucidation. The final conditions of the NMR sample to obtain the 3D-structure of a member from TomB family of proteins were: H6-YmoB-C117S at 1.4mM, pH=7.00 buffered with 20mM [NaH2PO4 + Na2HPO4], 150mM NaCl, 1mM TCEP, 0.1mM EDTA and 0.1% NaN3. 3. Functional studies of TomB family of proteins Understanding the different mechanisms of biofilm regulation and in particular clarifying the biological activity of TomB family of proteins as antitoxins of Hha in biofilms becomes of primary interest. In order to validate the YmoB constructs used, we also determined the effect of YmoB and [C117S] YmoB in the well-studied biofilm system formed by E. coli. We concluded that; Hha-TomB proteins form a toxin-antitoxin system with Hha the toxin and TomB the antitoxin, in planktonic cells as well as in biofilms, and we also demonstrated that the biological activity of TomB proteins is always related to Hha. We showed that TomB and YmoB are functionally interchangeable in planktonic cells and in biofilms, demonstrating that this TA module is functional in enteric bacteria and we confirmed that the C117S YmoB mutant, our optimal construct for NMR studies, is a biologically active antitoxin of Hha in E. coli planktonic and biofilm systems. 4. 3D Structure determination of [C117S] YmoB by NMR We obtained a high resolution structure, in which the 20 lowest energy models present an average pairwise RMSD under 1.5Ã… for the heavy atoms of residues forming α-helices. [C117S] YmoB structure consists in a four helix bundle. The protein is mainly negatively charged, but present two positives patches. 5. Oxidation and oligomerization of YmoB: a structure-driven hypothesis for YmoB function We observed that YmoB and TomB are labile proteins. Both formed oligomers involving cysteine oxidation. A mutant of YmoB containing a single cysteine residue was relatively stable but even this construct required a special fast NMR data acquisition protocol to determine its three dimensional structure, suggesting that this construct still undergoing slow modifications. The remaining Cys18 and its immediate environment are conserved between YmoB and TomB and C18 is buried in the hydrophobic core of [C117S] YmoB. We hypothesized that this cysteine may be functionally relevant and we investigated the reactivity of this residue and the oligomerization of YmoB. On the basis of the results obtained at least three possibilities exists as to the identity of the active antitoxin: a) the reduced YmoB monomer, b) YmoB dimers (or higher oligomers) and c) YmoB monomer with C18 oxidized as sulphenic acid. Further experiments will be necessary to determine which YmoB identity is the active antitoxin, to elucidate the mechanism of action of TomB/YmoB proteins as antitoxins and to define the exact role of C18 and its capacity to be oxidized into sulphenic acid and thiosulphinate in biofilm regulation
Cómo explicar fÃsica cuántica con un gato zombi
¿SabÃas que el teletransporte es real? ¿Que a veces un electrón tiene probabilidades de atravesar una pared? ¿Que dos partÃculas pueden influenciarse mutuamente aunque estén a años luz de distancia? ¿Y que las partÃculas cuánticas son como Clark Kent y disimulan sus poderes cuando los cientÃficos las están observando? En Cómo explicar la fÃsica cuántica con un gato zombi descubrirás que, aunque no lo parezca, la fÃsica cuántica está por todas partes en nuestra vida cotidiana. Y además aprenderás... ...¡los principios más locos y flipantes de la fÃsica cuántica! ...¡experimentos low cost que puedes hacer en tu casa! ...que los cientÃficos están un poco pallá, ¿lo sabÃas? ...y que los gatos tampoco son muy normales que digamos..
An oxygen-sensitive toxin-antitoxin system
The Hha and TomB proteins from Escherichia coli form an oxygen-dependent toxin-antitoxin (TA) system. Here we show that YmoB, the Yersinia orthologue of TomB, and its single cysteine variant [C117S]YmoB can replace TomB as antitoxins in E. coli. In contrast to other TA systems, [C117S]YmoB transiently interacts with Hha (rather than forming a stable complex) and enhances the spontaneous oxidation of the Hha conserved cysteine residue to a -SOxH- containing species (sulfenic, sulfinic or sulfonic acid), which destabilizes the toxin. The nuclear magnetic resonance structure of [C117S]YmoB and the homology model of TomB show that the two proteins form a four-helix bundle with a conserved buried cysteine connected to the exterior by a channel with a diameter comparable to that of an oxygen molecule. The Hha interaction site is located on the opposite side of the helix bundle