63 research outputs found

    Bordetella pertussis pertactin knock-out strains reveal immunomodulatory properties of this virulence factor.

    Get PDF
    Whooping cough, caused by Bordetella pertussis, has resurged and presents a global health burden worldwide. B. pertussis strains unable to produce the acellular pertussis vaccine component pertactin (Prn), have been emerging and in some countries represent up to 95% of recent clinical isolates. Knowledge on the effect that Prn deficiency has on infection and immunity to B. pertussis is crucial for the development of new strategies to control this disease. Here, we characterized the effect of Prn production by B. pertussis on human and murine dendritic cell (DC) maturation as well as in a murine model for pertussis infection. We incubated human monocyte-derived DCs (moDCs) with multiple isogenic Prn knockout (Prn-KO) and corresponding parental B. pertussis strains constructed either in laboratory reference strains with a Tohama I background or in a recently circulating clinical isolate. Results indicate that, compared to the parental strains, Prn-KO strains induced an increased production of pro-inflammatory cytokines by moDCs. This pro-inflammatory phenotype was also observed upon stimulation of murine bone marrow-derived DCs. Moreover, RNA sequencing analysis of lungs from mice infected with B. pertussis Prn-KO revealed increased expression of genes involved in cell death. These in vitro and in vivo findings indicate that B. pertussis strains which do not produce Prn induce a stronger pro-inflammatory response and increased cell death upon infection, suggesting immunomodulatory properties for Prn

    Transcriptomics in lung tissue upon respiratory syncytial virus infection reveals aging as important modulator of immune activation and matrix maintenance.

    Get PDF
    Aging poses an increased risk of severe infection by respiratory syncytial virus (RSV). The many different biological pathways comprising the response to infection in lungs that are influenced by aging are complex and remain to be defined more thoroughly. Towards finding new directions in research on aging, we aimed to define biological pathways in the acute response to RSV that are affected in the lungs by aging. We therefore profiled the full transcriptome of lung tissue of mice prior to and during RSV infection both at young and old age. In the absence of RSV, we found aging to downregulate genes that are involved in constitution of the extracellular matrix. Moreover, uninfected old mice showed elevated expression of pathways that resemble injury, metabolic aberrations, and disorders mediated by functions of the immune system that were induced at young age only by an exogenous trigger like RSV. Furthermore, infection by RSV mounted stronger activation of anti-viral type-I interferon pathways at old age. Despite such exaggerated anti-viral responses, old mice showed reduced control of virus. Altogether, our findings emphasize important roles in aging-related susceptibility to respiratory disease for extracellular matrix dysfunctions and dysregulated immune activation in lungs

    Meningococcal carriage in children and young adults: a cross-sectional and longitudinal study, Iceland, 2019 to 2021

    Get PDF
    Background Neisseria meningitidis is a commensal bacterium which can cause invasive disease. Colonisation studies are important to guide vaccination strategies.AimThe study's aim was to determine the prevalence of meningococcal colonisation, duration of carriage and distribution of genogroups in Iceland.MethodsWe collected samples from 1 to 6-year-old children, 15-16-year-old adolescents and 18-20-year-old young adults. Carriers were sampled at regular intervals until the first negative swab. Conventional culture methods and qPCR were applied to detect meningococci and determine the genogroup. Whole genome sequencing was done on groupable meningococci.ResultsNo meningococci were detected among 460 children, while one of 197 (0.5%) adolescents and 34 of 525 young adults (6.5 %) carried meningococci. Non-groupable meningococci were most common (62/77 isolates from 26/35 carriers), followed by genogroup B (MenB) (12/77 isolates from 6/35 carriers). Genogroup Y was detected in two individuals and genogroup W in one. None carried genogroup C (MenC). The longest duration of carriage was at least 21 months. Serial samples from persistent carriers were closely related in WGS.ConclusionsCarriage of pathogenic meningococci is rare in young Icelanders. Non-groupable meningococci were the most common colonising meningococci in Iceland, followed by MenB. No MenC were found. Whole genome sequencing suggests prolonged carriage of the same strains in persistent carriers

    Meningococcal carriage in children and young adults : a cross-sectional and longitudinal study, Iceland, 2019 to 2021

    Get PDF
    BackgroundNeisseria meningitidis is a commensal bacterium which can cause invasive disease. Colonisation studies are important to guide vaccination strategies.AimThe study's aim was to determine the prevalence of meningococcal colonisation, duration of carriage and distribution of genogroups in Iceland.MethodsWe collected samples from 1 to 6-year-old children, 15-16-year-old adolescents and 18-20-year-old young adults. Carriers were sampled at regular intervals until the first negative swab. Conventional culture methods and qPCR were applied to detect meningococci and determine the genogroup. Whole genome sequencing was done on groupable meningococci.ResultsNo meningococci were detected among 460 children, while one of 197 (0.5%) adolescents and 34 of 525 young adults (6.5 %) carried meningococci. Non-groupable meningococci were most common (62/77 isolates from 26/35 carriers), followed by genogroup B (MenB) (12/77 isolates from 6/35 carriers). Genogroup Y was detected in two individuals and genogroup W in one. None carried genogroup C (MenC). The longest duration of carriage was at least 21 months. Serial samples from persistent carriers were closely related in WGS.ConclusionsCarriage of pathogenic meningococci is rare in young Icelanders. Non-groupable meningococci were the most common colonising meningococci in Iceland, followed by MenB. No MenC were found. Whole genome sequencing suggests prolonged carriage of the same strains in persistent carriers.Peer reviewe

    Impact of age on pneumococcal colonization of the nasopharynx and oral cavity: an ecological perspective

    Get PDF
    Pneumococcal carriage studies have suggested that pneumococcal colonization in adults is largely limited to the oral cavity and oropharynx. In this study, we used total abundance-based ÎČ-diversity (dissimilarity) and ÎČ-diversity components to characterize age-related differences in pneumococcal serotype composition of respiratory samples. quantitative PCR (qPCR) was applied to detect pneumococcal serotypes in nasopharyngeal samples collected from 946 toddlers and 602 adults, saliva samples collected from a subset of 653 toddlers, and saliva and oropharyngeal samples collected from a subset of 318 adults. Bacterial culture rates from nasopharyngeal samples were used to characterize age-related differences in rates of colonizing bacteria. Dissimilarity in pneumococcal serotype composition was low among saliva and nasopharyngeal samples from children. In contrast, respiratory samples from adults exhibited high serotype dissimilarity, which predominantly consisted of abundance gradients and was associated with reduced nasopharyngeal colonization. Age-related serotype dissimilarity was high among nasopharyngeal samples and relatively low for saliva samples. Reduced nasopharyngeal colonization by pneumococcal serotypes coincided with significantly reduced Moraxella catarrhalis and Haemophilus influenzae and increased Staphylococcus aureus nasopharyngeal colonization rates among adults. Findings from this study suggest that within-host environmental conditions, utilized in the upper airways by pneumococcus and other bacteria, undergo age-related changes. It may result in a host-driven ecological succession of bacterial species colonizing the nasopharynx and lead to competitive exclusion of pneumococcus from the nasopharynx but not from the oral habitat. This explains the poor performance of nasopharyngeal samples for pneumococcal carriage among adults and indicates that in adults saliva more accurately represents the epidemiology of pneumococcal carriage than nasopharyngeal samples

    A spitting image: molecular diagnostics applied to saliva enhance detection of Streptococcus pneumoniae and pneumococcal serotype carriage

    Get PDF
    BACKGROUND: Despite strong historical records on the accuracy of saliva testing, oral fluids are considered poorly suited for pneumococcal carriage detection. We evaluated an approach for carriage surveillance and vaccine studies that increases the sensitivity and specificity of pneumococcus and pneumococcal serotype detection in saliva samples. METHODS: Quantitative PCR (qPCR)-based methods were applied to detect pneumococcus and pneumococcal serotypes in 971 saliva samples collected from 653 toddlers and 318 adults. Results were compared with culture-based and qPCR-based detection in nasopharyngeal samples collected from children and in nasopharyngeal and oropharyngeal samples collected from adults. Optimal C q cut-offs for positivity in qPCRs were determined via receiver operating characteristic curve analysis and accuracy of different approaches was assessed using a composite reference for pneumococcal and for serotype carriage based on isolation of live pneumococcus from the person or positivity of saliva samples determined with qPCR. To evaluate the inter-laboratory reproducibility of the method, 229 culture-enriched samples were tested independently in the second center. RESULTS: In total, 51.5% of saliva samples from children and 31.8% of saliva samples from adults were positive for pneumococcus. Detection of pneumococcus by qPCR in culture-enriched saliva exhibited enhanced sensitivity and higher agreement with a composite reference compared to diagnostic culture of nasopharyngeal samples in children (Cohen's Îș: 0.69-0.79 vs. 0.61-0.73) and in adults (Îș: 0.84-0.95 vs. 0.04-0.33) and culture of oropharyngeal samples in adults (Îș: 0.84-0.95 vs. -0.12-0.19). Similarly, detection of serotypes with qPCR in culture-enriched saliva exhibited enhanced sensitivity and higher agreement with a composite reference compared to nasopharyngeal culture in children (Îș: 0.73-0.82 vs. 0.61-0.73) and adults (Îș: 0.90-0.96 vs. 0.00-0.30) and oropharyngeal culture in adults (Îș: 0.90-0.96 vs. -0.13 to 0.30). However, results of qPCRs targeting serotype 4, 5, and 17F and serogroups 9, 12, and 35 were excluded due to assays' lack of specificity. We observed excellent quantitative agreement for qPCR-based detection of pneumococcus between laboratories. After exclusion of serotype/serogroup-specific assays with insufficient specificity, moderate agreement (Îș 0.68, 95% CI 0.58-0.77) was observed. CONCLUSION: Molecular testing of culture-enriched saliva samples improves the sensitivity of overall surveillance of pneumococcal carriage in children and adults, but limitations of qPCR-based approaches for pneumococcal serotypes carriage detection should be considered

    A spitting image: molecular diagnostics applied to saliva enhance detection of Streptococcus pneumoniae and pneumococcal serotype carriage

    Get PDF
    BackgroundDespite strong historical records on the accuracy of saliva testing, oral fluids are considered poorly suited for pneumococcal carriage detection. We evaluated an approach for carriage surveillance and vaccine studies that increases the sensitivity and specificity of pneumococcus and pneumococcal serotype detection in saliva samples.MethodsQuantitative PCR (qPCR)-based methods were applied to detect pneumococcus and pneumococcal serotypes in 971 saliva samples collected from 653 toddlers and 318 adults. Results were compared with culture-based and qPCR-based detection in nasopharyngeal samples collected from children and in nasopharyngeal and oropharyngeal samples collected from adults. Optimal Cq cut-offs for positivity in qPCRs were determined via receiver operating characteristic curve analysis and accuracy of different approaches was assessed using a composite reference for pneumococcal and for serotype carriage based on isolation of live pneumococcus from the person or positivity of saliva samples determined with qPCR. To evaluate the inter-laboratory reproducibility of the method, 229 culture-enriched samples were tested independently in the second center.ResultsIn total, 51.5% of saliva samples from children and 31.8% of saliva samples from adults were positive for pneumococcus. Detection of pneumococcus by qPCR in culture-enriched saliva exhibited enhanced sensitivity and higher agreement with a composite reference compared to diagnostic culture of nasopharyngeal samples in children (Cohen’s Îș: 0.69–0.79 vs. 0.61–0.73) and in adults (Îș: 0.84–0.95 vs. 0.04–0.33) and culture of oropharyngeal samples in adults (Îș: 0.84–0.95 vs. −0.12–0.19). Similarly, detection of serotypes with qPCR in culture-enriched saliva exhibited enhanced sensitivity and higher agreement with a composite reference compared to nasopharyngeal culture in children (Îș: 0.73–0.82 vs. 0.61–0.73) and adults (Îș: 0.90–0.96 vs. 0.00–0.30) and oropharyngeal culture in adults (Îș: 0.90–0.96 vs. −0.13 to 0.30). However, results of qPCRs targeting serotype 4, 5, and 17F and serogroups 9, 12, and 35 were excluded due to assays’ lack of specificity. We observed excellent quantitative agreement for qPCR-based detection of pneumococcus between laboratories. After exclusion of serotype/serogroup-specific assays with insufficient specificity, moderate agreement (Îș 0.68, 95% CI 0.58–0.77) was observed.ConclusionMolecular testing of culture-enriched saliva samples improves the sensitivity of overall surveillance of pneumococcal carriage in children and adults, but limitations of qPCR-based approaches for pneumococcal serotypes carriage detection should be considered

    Identification of novel loci associated with human microbiota composition

    Full text link
    Our understanding of the factors shaping intestinal microbiome composition has increased significantly during last decade. Host genetics is one of these factors and may explain ~10% of the microbiome variance . So far, and despite the number of GWAS studies performed to identify loci associated with microbiome composition, only few associations were cross‑replicated. This study makes use of an extensive dataset integrating 300 healthy individuals (CEDAR-1 cohort) from whom we obtained (i) genotype (Illumina Human OmniExpress BeadChip imputed to 6M SNPs with MAFâ©Ÿ5%) (ii) 16S rRNA based taxonomic assignation for biopsies from the ileum, transverse colon and rectum (3 amplicons mapped to SILVA database). We performed a GWAS (PLINK additive model) to unravel new associations between genotype and microbiota. Our findings were further verified in two confirmation cohorts obtained from residual stool samples collected during colonoscopy (n=295), from ileum, transverse colon and rectum biopsies and stools (CEDAR-2 cohort) (n~ 50 and 20) where we also tested for individual variation regarding sample provenance. We observed that intestinal location explained a small part of the microbiome variability (50%). We identified three association between SNP and bacterium abundance at the experiment-wide p-value threshold (6x10-10). Among these three associations, the second and third were reproduced at nominal p value of 5% in the confirmation cohort. We have identified 2 putative novel loci associated with human microbiome composition . We also showed a strong individual effect on bacterial communities and a low location variability across the intestinal tract

    VSL#3 inhibits LPS-induced phosphorylation of STAT-1.

    No full text
    <p>(<b>A</b>) LPS-induced genes, significantly suppressed by VSL#3, were analyzed by using Metacore Network analysis (Transcription factor). STAT-1 was predicted to be a key driver of this cluster. DC were stimulated for 3 hours, and phosphorylation of NF-ÎșBp65 (<b>B</b>) and STAT-1 (<b>C</b>) was quantified in nuclear extracts using the Trans-am assay. Absorbance values (mean ± SD) of 5 individual donors are shown. Rank-Wilcoxon paired test: * p<0.05, ** p<0.01.</p
    • 

    corecore