22 research outputs found

    Constitutional mismatch repair deficiency syndrome with atypical features caused by a homozygous MLH1 missense variant (c.1918C>A, p.(Pro640Thr)): a case report

    Get PDF
    Constitutional mismatch repair deficiency (CMMRD) syndrome is a rare autosomal recessive genetic disorder caused by biallelic germline mutations in one of the mismatch repair genes. Carriers are at exceptionally high risk for developing, typically in early life, hematological and brain malignancies, as well as cancers observed in Lynch syndrome. We report a homozygous MLH1 missense variant (c.1918C>A p.(Pro640Thr)) in a Tunisian patient with CMMRD syndrome and a family history of early-age colorectal cancer. The proband presented initially with colonic oligopolyposis and adenosquamous carcinoma of the caecum. He later developed several malignancies, including undifferentiated carcinoma of the parotid, grade 4 IDH-mutant astrocytoma, and ampulla of Vater adenocarcinoma. The patient was older than typical for this disease and had a remarkably prolonged survival despite developing four distinct aggressive malignancies. The current report highlights the challenges in assessing the pathogenicity of the identified variant and the remarkable phenotypic diversity in CMMRD

    PIK3CA mutations in breast cancer: A Tunisian series.

    No full text
    BackgroundThe aim of this study was to analyze PIK3CA mutations in exons 9 and 20 in breast cancers (BCs) and their association with clinicopathological characteristics.MethodsMutational analysis of PIK3CA exon 9 and 20 was performed by Sanger sequencing in 54 primary BCs of Tunisian women. The associations of PIK3CA mutations with clinicopathological characteristics were analyzed.ResultsFifteen exon 9 and exon 20 PIK3CA variants were identified in 33/54 cases (61%). PIK3CA mutations including pathogenic (class 5/Tier I) or likely pathogenic (class 4/Tier II) occurred in 24/54 cases (44%): 17/24 cases (71%) in exon 9, 5/24 cases (21%) in exon 20 and 2/24 cases (8%) in both exons. Of these 24 cases, 18 (75%) carried at least one of the three hot spot mutations: E545K (in 8 cases), H1047R (in 4 cases), E542K (in 3 cases), E545K/E542K (in one case), E545K/H1047R (in one case) and P539R/H1047R (in one case). Pathogenic PIK3CA mutations were associated with negative lymph node status (p = 0.027). Age distribution, histological SBR tumor grading, estrogen and progesterone receptors, human epidermal growth factor receptor 2, and molecular classification were not correlated with PIK3CA mutations (p > 0.05).ConclusionThe frequency of somatic PIK3CA mutations in BCs of Tunisian women is slightly higher than that of BCs of Caucasian women and more observed in exon 9 than in exon 20. PIK3CA mutated status is associated with negative lymph node status. These data need to be confirmed in larger series

    A Founder Large Deletion Mutation in Xeroderma Pigmentosum-Variant Form in Tunisia: Implication for Molecular Diagnosis and Therapy

    No full text
    Xeroderma pigmentosum Variant (XP-V) form is characterized by a late onset of skin symptoms. Our aim is the clinical and genetic investigations of XP-V Tunisian patients in order to develop a simple tool for early diagnosis. We investigated 16 suspected XP patients belonging to ten consanguineous families. Analysis of the POLH gene was performed by linkage analysis, long range PCR, and sequencing. Genetic analysis showed linkage to the POLH gene with a founder haplotype in all affected patients. Long range PCR of exon 9 to exon 11 showed a 3926 bp deletion compared to control individuals. Sequence analysis demonstrates that this deletion has occurred between two Alu-Sq2 repetitive sequences in the same orientation, respectively, in introns 9 and 10. We suggest that this mutation POLH NG_009252.1: g.36847_40771del3925 is caused by an equal crossover event that occurred between two homologous chromosomes at meiosis. These results allowed us to develop a simple test based on a simple PCR in order to screen suspected XP-V patients. In Tunisia, the prevalence of XP-V group seems to be underestimated and clinical diagnosis is usually later. Cascade screening of this founder mutation by PCR in regions with high frequency of XP provides a rapid and cost-effective tool for early diagnosis of XP-V in Tunisia and North Africa

    Family specific genetic predisposition to breast cancer: results from Tunisian whole exome sequenced breast cancer cases

    No full text
    Abstract Background A family history of breast cancer has long been thought to indicate the presence of inherited genetic events that predispose to this disease. In North Africa, many specific epidemio-genetic characteristics have been observed in breast cancer families when compared to Western populations. Despite these specificities, the majority of breast cancer genetics studies performed in North Africa remain restricted to the investigation of the BRCA1 and BRCA2 genes. Thus, comprehensive data at a whole exome or whole genome level from local patients are lacking. Methods A whole exome sequencing (WES) of seven breast cancer Tunisian families have been performed using a family-based approach. We focused our analysis on BC-TN-F001 family that included two affected members that have been sequenced using WES. Relevant variants identified in BC-TN-F001 have been confirmed using Sanger sequencing. Then, we conducted an integrative analysis by combining our results with those from other WES studies in order to figure out the genetic transmission model of the newly identified genes. Biological network construction and protein–protein interactions analyses have been performed to decipher the molecular mechanisms likely accounting for the role of these genes in breast cancer risk. Results Sequencing, filtering strategies, and validation analysis have been achieved. For BC-TN-F001, no deleterious mutations have been identified on known breast cancer genes. However, 373 heterozygous, exonic and rare variants have been identified on other candidate genes. After applying several filters, 12 relevant high-risk variants have been selected. Our results showed that these variants seem to be inherited in a family specific model. This hypothesis has been confirmed following a thorough analysis of the reported WES studies. Enriched biological process and protein–protein interaction networks resulted in the identification of four novel breast cancer candidate genes namely MMS19, DNAH3, POLK and KATB6. Conclusions In this first WES application on Tunisian breast cancer patients, we highlighted the impact of next generation sequencing technologies in the identification of novel breast cancer candidate genes which may bring new insights into the biological mechanisms of breast carcinogenesis. Our findings showed that the breast cancer predisposition in non-BRCA families may be ethnic and/or family specific

    Family specific genetic predisposition to breast cancer: results from Tunisian whole exome sequenced breast cancer cases.

    No full text
    International audienceBACKGROUND:A family history of breast cancer has long been thought to indicate the presence of inherited genetic events that predispose to this disease. In North Africa, many specific epidemio-genetic characteristics have been observed in breast cancer families when compared to Western populations. Despite these specificities, the majority of breast cancer genetics studies performed in North Africa remain restricted to the investigation of the BRCA1 and BRCA2 genes. Thus, comprehensive data at a whole exome or whole genome level from local patients are lacking.METHODS:A whole exome sequencing (WES) of seven breast cancer Tunisian families have been performed using a family-based approach. We focused our analysis on BC-TN-F001 family that included two affected members that have been sequenced using WES. Relevant variants identified in BC-TN-F001 have been confirmed using Sanger sequencing. Then, we conducted an integrative analysis by combining our results with those from other WES studies in order to figure out the genetic transmission model of the newly identified genes. Biological network construction and protein-protein interactions analyses have been performed to decipher the molecular mechanisms likely accounting for the role of these genes in breast cancer risk.RESULTS:Sequencing, filtering strategies, and validation analysis have been achieved. For BC-TN-F001, no deleterious mutations have been identified on known breast cancer genes. However, 373 heterozygous, exonic and rare variants have been identified on other candidate genes. After applying several filters, 12 relevant high-risk variants have been selected. Our results showed that these variants seem to be inherited in a family specific model. This hypothesis has been confirmed following a thorough analysis of the reported WES studies. Enriched biological process and protein-protein interaction networks resulted in the identification of four novel breast cancer candidate genes namely MMS19, DNAH3, POLK and KATB6.CONCLUSIONS:In this first WES application on Tunisian breast cancer patients, we highlighted the impact of next generation sequencing technologies in the identification of novel breast cancer candidate genes which may bring new insights into the biological mechanisms of breast carcinogenesis. Our findings showed that the breast cancer predisposition in non-BRCA families may be ethnic and/or family specific

    A genome wide SNP genotyping study in the Tunisian population: specific reporting on a subset of common breast cancer risk loci

    No full text
    International audienceBackground: Breast cancer is the most common cancer in women worldwide. Around 50% of breast cancer familial risk has been so far explained by known susceptibility alleles with variable levels of risk and prevalence. The vast majority of these breast cancer associated variations reported to date are from populations of European ancestry. In spite of its heterogeneity and genetic wealth, North-African populations have not been studied by the HapMap and the 1000Genomes projects. Thus, very little is known about the genetic architecture of these populations.Methods : This study aimed to investigate a subset of common breast cancer loci in the general Tunisian population and to compare their genetic composition to those of other ethnic groups. We undertook a genome-wide haplotype study by genotyping 135 Tunisian subjects using the Affymetrix 6.0-Array. We compared Tunisian allele frequencies and linkage disequilibrium patterns to those of HapMap populations and we performed a comprehensive assessment of the functional effects of several selected variants.Results : Haplotype analyses showed that at risk haplotypes on 2p24, 4q21, 6q25, 9q31, 10q26, 11p15, 11q13 and 14q32 loci are considerably frequent in the Tunisian population (> 20%). Allele frequency comparison showed that the frequency of rs13329835 is significantly different between Tunisian and all other HapMap populations. LD-blocks and Principle Component Analysis revealed that the genetic characteristics of breast cancer variants in the Tunisian, and so probably the North-African populations, are more similar to those of Europeans than Africans

    Specific aspects of consanguinity: some examples from the tunisian population.

    No full text
    International audienceLocated at the cross-road between Europe and Africa, Tunisia is a North African country of 11 million inhabitants. Throughout its history, it has been invaded by different ethnic groups. These historical events, and consanguinity, have impacted on the spectrum and frequency of genetic diseases in Tunisia. Investigations of Tunisian families have significantly contributed to elucidation of the genetic bases of rare disorders, providing an invaluable resource of cases due to particular familial structures (large family size, consanguinity and share of common ancestors). In the present study, we report on and review different aspects of consanguinity in the Tunisian population as a case study, representing several features common to neighboring or historically related countries in North Africa and the Middle East. Despite the educational, demographic and behavioral changes that have taken place during the last four decades, familial and geographical endogamy still exist at high frequencies, especially in rural areas. The health implications of consanguinity in Tunisian families include an increased risk of the expression of autosomal recessive diseases and particular phenotypic expressions. With new sequencing technologies, the investigation of consanguineous populations provides a unique opportunity to better evaluate the impact of consanguinity on the genome dynamic and on health, in addition to a better understanding of the genetic bases of diseases. © 2014 S. Karger AG, Basel
    corecore