4 research outputs found

    Expression of Leaf Nitrate Reductase Genes from Tomato and Tobacco in Relation to Light-Dark Regimes and Nitrate Supply

    No full text
    The influence of light-dark cycles and nitrate supply on nitrate reductase (NR) mRNA levels was studied in two plant species, tobacco (Nicotiana tabacum) and tomato (Lycopersicon esculentum) using specific NR DNA probes. In the same series of experiments, changes in the levels of NR protein (NRP) by enzyme-linked immunosorbent assay and changes in the level of NADH-nitrate reductase activity (NRA) were also followed. During a light-dark cycle, it was found that in both tomato and tobacco, NR mRNA accumulation increased rapidly during the dark period and reached a maximum at the beginning of the day, while NRP reached a peak 2 and 4 hours after mRNA peaked, for tomato and tobacco, respectively. At the end of the day, the amount of mRNA was decreased by a factor of at least 100 compared to sunrise in both species. These results demonstrate that light is involved, although probably not directly, in the regulation of the NR gene expression at the mRNA level. The peak of NRA in tobacco coincided with the peak in NR mRNA accumulation (i.e. sunrise), whereas in tomato the peak of NRA was approximately 5 to 6 hours after sunrise. There is no obvious correlation between NRP and NRA levels during the day. In nitrogen starvation experiments, a rapid decrease of NRP and NRA was detected, while NR mRNA levels were not significantly altered. Upon nitrate replenishment, nitrogen-starved plants accumulated NR mRNA rapidly. These results suggest that the availability of nitrogen affects the expression of NR activity at the transcriptional as well as at the post-transcriptional levels

    QUASIMODO1 Encodes a Putative Membrane-Bound Glycosyltransferase Required for Normal Pectin Synthesis and Cell Adhesion in Arabidopsis

    No full text
    Pectins are a highly complex family of cell wall polysaccharides. As a result of a lack of specific mutants, it has been difficult to study the biosynthesis of pectins and their role in vivo. We have isolated two allelic mutants, named quasimodo1 (qua1-1 and qua1-2), that are dwarfed and show reduced cell adhesion. Mutant cell walls showed a 25% reduction in galacturonic acid levels compared with the wild type, indicating reduced pectin content, whereas neutral sugars remained unchanged. Immersion immunofluorescence with the JIM5 and JIM7 monoclonal antibodies that recognize homogalacturonan epitopes revealed less labeling of mutant roots compared with the wild type. Both mutants carry a T-DNA insertion in a gene (QUA1) that encodes a putative membrane-bound glycosyltransferase of family 8. We present evidence for the possible involvement of a glycosyltransferase of this family in the synthesis of pectic polysaccharides, suggesting that other members of this large multigene family in Arabidopsis also may be important for pectin biosynthesis. The mutant phenotype is consistent with a central role for pectins in cell adhesion
    corecore