25 research outputs found

    Cellular Uptake and Nuclear Delivery of Recombinant Adenovirus Penton Base

    Get PDF
    AbstractAn Ad2 capsid component, the penton base, expressed as recombinant protein, was found to be capable of affecting the entire entry pathway of adenovirion in HeLa cells, i.e., cell attachment, endocytosis, vesicular escape, intracytoplasmic movement, and translocation through the nuclear pore complex. Data with pentamerization-defective mutants suggested that none of these successive steps depended upon penton base pentamer status, indicating that the peptide domains responsible for these functions were carried by the monomer. Observations performed with wild-type (WT) and an integrin-binding-site double-mutant (K288E340) suggested that the penton base could enter the cell via an alternative, RGD- and LDV-independent, pathway. Of three mutants that were found to be defective in nuclear addressing in insect cells, only one, W165H, was also altered in nuclear transport in HeLa cells. The other two, W119H and RRR547EQQ, showed a WT pattern of nuclear localization in HeLa cells, suggesting that the region including tryptophan-119 and the basic signal at position 547 did not act as a nuclear localization signal in the human cell context. The integrity of cellular structures and the cytoskeleton seemed to be required for the vectorial movement and nuclear import of WT penton base, as suggested by experiments using permeabilized HeLa cells, isolated nuclear membranes, and cytoskeleton-targeted drugs

    Expression and localization of nuclear proteins in autosomal-dominant Emery-Dreifuss muscular dystrophy with LMNA R377H mutation

    Get PDF
    BACKGROUND: The autosomal dominant form of Emery-Dreifuss muscular dystrophy (AD-EDMD) is caused by mutations in the gene encoding for the lamins A and C (LMNA). Lamins are intermediate filament proteins which form the nuclear lamina underlying the inner nuclear membrane. We have studied the expression and the localization of nuclear envelope proteins in three different cell types and muscle tissue of an AD-EDMD patient carrying a point mutation R377H in the lamin A/C gene. RESULTS: Lymphoblastoid cells, skin fibroblasts, primary myoblasts and muscle thin sections were studied by immunocytochemistry and electron microscopy. Cellular levels of A-type lamins were reduced compared to control cells. In contrast, the amount of emerin and lamin B appeared unaltered. Cell synchronization experiments showed that the reduction of the cellular level of A-type lamin was due to instability of lamin A. By electron microscopy, we identified a proportion of nuclei with morphological alterations in lymphoblastoid cells, fibroblasts and mature muscle fibres. Immunofluorescence microscopy showed that a major population of the lamin B receptor (LBR), an inner nuclear membrane protein, was recovered in the cytoplasm in association with the ER. In addition, the intranuclear organization of the active form of RNA polymerase II was markedly different in cells of this AD-EDMD patient. This aberrant intranuclear distribution was specifically observed in muscle cells where the pathology of EDMD predominates. CONCLUSIONS: From our results we conclude: Firstly, that structural alterations of the nuclei which are found only in a minor fraction of lymphoblastoid cells and mature muscle fibres are not sufficient to explain the clinical pathology of EDMD; Secondly, that wild type lamin A is required not only for the retention of LBR in the inner nuclear membrane but also for a correct localization of the transcriptionally active RNA pol II in muscle cells. We speculate that a rearrangement of the internal chromatin could lead to muscle-specific disease symptoms by interference with proper mRNA transcription

    Sharpening emitter localization in front of a tuned mirror

    Get PDF
    Single-molecule localization microscopy (SMLM) aims for maximized precision and a high signal-to-noise ratio1. Both features can be provided by placing the emitter in front of a metal-dielectric nanocoating that acts as a tunedmirror2–4. Here, we demonstrate that a higher photon yield at a lower background on biocompatible metal-dielectric nanocoatings substantially improves SMLM performance and increases the localization precision by up to a factor oftwo. The resolution improvement relies solely on easy-to-fabricate nanocoatings on standard glass coverslips and is spectrally and spatially tunable by the layer design and wavelength, as experimentally demonstrated for dual-color SMLM in cells.Publisher PDFPeer reviewe

    Identification of Eps15 as Antigen Recognized by the Monoclonal Antibodies aa2 and ab52 of the Wuerzburg Hybridoma Library against Drosophila Brain

    Get PDF
    The Wuerzburg Hybridoma Library against the Drosophila brain represents a collection of around 200 monoclonal antibodies that bind to specific structures in the Drosophila brain. Here we describe the immunohistochemical staining patterns, the Western blot signals of one- and two-dimensional electrophoretic separation, and the mass spectrometric characterization of the target protein candidates recognized by the monoclonal antibodies aa2 and ab52 from the library. Analysis of a mutant of a candidate gene identified the Drosophila homolog of the Epidermal growth factor receptor Pathway Substrate clone 15 (Eps15) as the antigen for these two antibodies
    corecore