8 research outputs found

    SAGA and ATAC Histone Acetyl Transferase Complexes Regulate Distinct Sets of Genes and ATAC Defines a Class of p300-Independent Enhancers

    No full text
    International audienceHistone acetyltransferase (HAT) complexes are coactivators that are important for transcriptional activation by modifying chromatin. Metazoan SAGA and ATAC are distinct multisubunits complexes that share the same catalytic HAT subunit (GCN5 or PCAF). Here, we show that these human HAT complexes are targeted to different genomic loci representing functionally distinct regulatory elements both at broadly expressed and tissue-specific genes. While SAGA can principally be found at promoters, ATAC is recruited to promoters and enhancers, yet only its enhancer binding is cell-type specific. Furthermore, we show that ATAC functions at a set of enhancers that are not bound by p300, revealing a class of enhancers not yet identified. These findings demonstrate important functional differences between SAGA and ATAC coactivator complexes at the level of the genome and define a role for the ATAC complex in the regulation of a set of enhancers

    DNA methylation-histone modification relationships across the desmin locus in human primary cells

    Get PDF
    BACKGROUND: We present here an extensive epigenetic analysis of a 500 kb region, which encompasses the human desmin gene (DES) and its 5' locus control region (LCR), the only muscle-specific transcriptional regulatory element of this type described to date. These data complement and extend Encyclopaedia of DNA Elements (ENCODE) studies on region ENr133. We analysed histone modifications and underlying DNA methylation patterns in physiologically relevant DES expressing (myoblast/myotube) and non-expressing (peripheral blood mononuclear) primary human cells. RESULTS: We found that in expressing myoblast/myotube but not peripheral blood mononuclear cell (PBMC) cultures, histone H4 acetylation displays a broadly distributed enrichment across a gene rich 200 kb region whereas H3 acetylation localizes at the transcriptional start site (TSS) of genes. We show that the DES LCR and TSS of DES are enriched with hyperacetylated domains of acetylated histone H3, with H3 lysine 4 di- and tri-methylation (H3K4me2 and me3) exhibiting a different distribution pattern across this locus. The CpG island that extends into the first intron of DES is methylation-free regardless of the gene's expression status and in non-expressing PBMCs is marked with histone H3 lysine 27 tri-methylation (H3K27me3). CONCLUSION: Overall, our results constitute the first study correlating patterns of histone modifications and underlying DNA methylation of a muscle-specific LCR and its associated downstream gene region whilst additionally placing this within a much broader genomic context. Our results clearly show that there are distinct patterns of histone H3 and H4 acetylation and H3 methylation at the DES LCR, promoter and intragenic region. In addition, the presence of H3K27me3 at the DES methylation-free CpG only in non-expressing PBMCs may serve to silence this gene in non-muscle tissues. Generally, our work demonstrates the importance of using multiple, physiologically relevant tissue types that represent different expressing/non-expressing states when investigating epigenetic marks and that underlying DNA methylation status should be correlated with histone modification patterns when studying chromatin structure
    corecore