9 research outputs found
mRNA in situ hybridization exhibits unbalanced nuclear/cytoplasmic dystrophin transcript repartition in Duchenne myogenic cells and skeletal muscle biopsies
To gain insight on dystrophin (DMD) gene transcription dynamics and spatial localization, we assayed the DMD mRNA amount and defined its compartmentalization in myoblasts, myotubes, and skeletal muscle biopsies of Duchenne muscular dystrophy (DMD) patients. Using droplet digital PCR, Real-time PCR, and RNAscope in situ hybridization, we showed that the DMD transcript amount is extremely reduced in both DMD patients' cells and muscle biopsies and that mutation-related differences occur. We also found that, compared to controls, DMD transcript is dramatically reduced in the cytoplasm, as up to 90% of it is localized in nuclei, preferentially at the perinuclear region. Using RNA/protein colocalization experiments, we showed that about 40% of nuclear DMD mRNA is localized in the nucleoli in both control and DMD myogenic cells. Our results clearly show that mutant DMD mRNA quantity is strongly reduced in the patients' myogenic cells and muscle biopsies. Furthermore, mutant DMD mRNA compartmentalization is spatially unbalanced due to a shift in its localization towards the nuclei. This abnormal transcript repartition contributes to the poor abundance and availability of the dystrophin messenger in cytoplasm. This novel finding also has important repercussions for RNA-targeted therapies
Genetic newborn screening and digital technologies: A project protocol based on a dual approach to shorten the rare diseases diagnostic path in Europe.
Since 72% of rare diseases are genetic in origin and mostly paediatrics, genetic newborn screening represents a diagnostic "window of opportunity". Therefore, many gNBS initiatives started in different European countries. Screen4Care is a research project, which resulted of a joint effort between the European Union Commission and the European Federation of Pharmaceutical Industries and Associations. It focuses on genetic newborn screening and artificial intelligence-based tools which will be applied to a large European population of about 25.000 infants. The neonatal screening strategy will be based on targeted sequencing, while whole genome sequencing will be offered to all enrolled infants who may show early symptoms but have resulted negative at the targeted sequencing-based newborn screening. We will leverage artificial intelligence-based algorithms to identify patients using Electronic Health Records (EHR) and to build a repository "symptom checkers" for patients and healthcare providers. S4C will design an equitable, ethical, and sustainable framework for genetic newborn screening and new digital tools, corroborated by a large workout where legal, ethical, and social complexities will be addressed with the intent of making the framework highly and flexibly translatable into the diverse European health systems
mRNA in situ hybridization exhibits unbalanced nuclear/cytoplasmic dystrophin transcript repartition in Duchenne myogenic cells and skeletal muscle biopsies
Abstract To gain insight on dystrophin (DMD) gene transcription dynamics and spatial localization, we assayed the DMD mRNA amount and defined its compartmentalization in myoblasts, myotubes, and skeletal muscle biopsies of Duchenne muscular dystrophy (DMD) patients. Using droplet digital PCR, Real-time PCR, and RNAscope in situ hybridization, we showed that the DMD transcript amount is extremely reduced in both DMD patients’ cells and muscle biopsies and that mutation-related differences occur. We also found that, compared to controls, DMD transcript is dramatically reduced in the cytoplasm, as up to 90% of it is localized in nuclei, preferentially at the perinuclear region. Using RNA/protein colocalization experiments, we showed that about 40% of nuclear DMD mRNA is localized in the nucleoli in both control and DMD myogenic cells. Our results clearly show that mutant DMD mRNA quantity is strongly reduced in the patients’ myogenic cells and muscle biopsies. Furthermore, mutant DMD mRNA compartmentalization is spatially unbalanced due to a shift in its localization towards the nuclei. This abnormal transcript repartition contributes to the poor abundance and availability of the dystrophin messenger in cytoplasm. This novel finding also has important repercussions for RNA-targeted therapies
Left Ventricular Myocardial Noncompaction with Advanced Atrioventricular Conduction Disorder and Ventricular Arrhythmias in a Young Patient: Role of MIB1 Gene
Left ventricular noncompaction (LVNC) is a structural abnormality of the left ventricle, usually described as an isolated condition, or sometimes associated with other structural cardiac diseases. LVNC is generally asymptomatic, although it may present conduction disorders, arrhythmias, and heart failure. Here, we present the case of a patient who came to our attention with a severe LVNC phenotype associated with advanced AV conduction disorder, and supraventricular and ventricular arrhythmias at young age, in which a novel MIB1, likely pathogenic, variation has been identified
Mutations in MYBPC3 and MYH7 in Association with Brugada Type 1 ECG Pattern: Overlap between Brugada Syndrome and Hypertrophic Cardiomyopathy?
Brugada syndrome (BrS) is an inherited disorder with high allelic and genetic heterogeneity clinically characterized by typical coved-type ST segment elevation at the electrocardiogram (ECG), which may occur either spontaneously or after provocative drug testing. BrS is classically described as an arrhythmic condition occurring in a structurally normal heart and is associated with the risk of ventricular fibrillation and sudden cardiac death (SCD). We studied five patients with spontaneous or drug-induced type 1 ECG pattern, variably associated with symptoms and a positive family history through a Next Generation Sequencing panels approach, which includes genes of both channelopathies and cardiomyopathies. We identified variants in MYBPC3 and in MYH7, hypertrophic cardiomyopathy (HCM) genes (MYBPC3: p.Lys1065Glnfs*12 and c.1458-1G > A, MYH7: p.Arg783His, p.Val1213Met, p.Lys744Thr). Our data propose that Brugada type 1 ECG may be an early electrocardiographic marker of a concealed structural heart disease, possibly enlarging the genotypic overlap between Brugada syndrome and cardiomyopathies
Functional Characterization of Two Novel Mutations in SCN5A Associated with Brugada Syndrome Identified in Italian Patients
Background. Brugada syndrome (BrS) is an autosomal dominantly inherited cardiac disease characterized by “coved type” ST-segment elevation in the right precordial leads, high susceptibility to ventricular arrhythmia and a family history of sudden cardiac death. The SCN5A gene, encoding for the cardiac voltage-gated sodium channel Nav1.5, accounts for ~20–30% of BrS cases and is considered clinically relevant. Methods. Here, we describe the clinical findings of two Italian families affected by BrS and provide the functional characterization of two novel SCN5A mutations, the missense variant Pro1310Leu and the in-frame insertion Gly1687_Ile1688insGlyArg. Results. Despite being clinically different, both patients have a family history of sudden cardiac death and had history of arrhythmic events. The Pro1310Leu mutation significantly reduced peak sodium current density without affecting channel membrane localization. Changes in the gating properties of expressed Pro1310Leu channel likely account for the loss-of-function phenotype. On the other hand, Gly1687_Ile1688insGlyArg channel, identified in a female patient, yielded a nearly undetectable sodium current. Following mexiletine incubation, the Gly1687_Ile1688insGlyArg channel showed detectable, albeit very small, currents and biophysical properties similar to those of the Nav1.5 wild-type channel. Conclusions. Overall, our results suggest that the degree of loss-of-function shown by the two Nav1.5 mutant channels correlates with the aggressive clinical phenotype of the two probands. This genotype-phenotype correlation is fundamental to set out appropriate therapeutical intervention
SCN5A mutation is associated with a higher Shanghai Score in patients with type 1 Brugada ECG pattern
Aims Brugada syndrome (BrS) is an inherited arrhythmic disease characterized by a coved ST-segment elevation in the right precordial electrocardiogram leads (type 1 ECG pattern) and is associated with a risk of malignant ventricular arrhythmias and sudden cardiac death. In order to assess the predictive value of the Shanghai Score System for the presence of a SCN5A mutation in clinical practice, we studied a cohort of 125 patients with spontaneous or fever/drug-induced BrS type 1 ECG pattern, variably associated with symptoms and a positive family history.Methods The Shanghai Score System items were collected for each patient and PR and QRS complex intervals were measured. Patients were genotyped through a next-generation sequencing (NGS) custom panel for the presence of SCN5A mutations and the common SCN5A polymorphism (H558R).Results The total Shanghai Score was higher in SCN5A+ patients than in SCN5A- patients. The 81% of SCN5A+ patients and the 100% of patients with a SCN5A truncating variant exhibit a spontaneous type 1 ECG pattern. A significant increase in PR (P = 0.006) and QRS (P = 0.02) was detected in the SCN5A+ group. The presence of the common H558R polymorphism did not significantly correlate with any of the items of the Shanghai Score, nor with the total score of the system.Conclusion Data from our study suggest the usefulness of Shanghai Score collection in clinical practice in order to maximize genetic test appropriateness. Our data further highlight SCN5A mutations as a cause of conduction impairment in BrS patients
Digital health and Clinical Patient Management System (CPMS) platform utility for data sharing of neuromuscular patients: the Italian EURO-NMD experience
Abstract Background The development of e-health technologies for teleconsultation and exchange of knowledge is one of the core purposes of European Reference Networks (ERNs), including the ERN EURO-NMD for rare neuromuscular diseases. Within ERNs, the Clinical Patient Management System (CPMS) is a web-based platform that seeks to boost active collaboration within and across the network, implementing data sharing. Through CPMS, it is possible to both discuss patient cases and to make patients’ data available for registries and databases in a secure way. In this view, CPMS may be considered a sort of a temporary storage for patients’ data and an effective tool for data sharing; it facilitates specialists’ consultation since rare diseases (RDs) require multidisciplinary skills, specific, and outstanding clinical experience. Following European Union (EU) recommendation, and to promote the use of CPMS platform among EURO-NMD members, a twelve-month pilot project was set up to train the 15 Italian Health Care Providers (HCPs). In this paper, we report the structure, methods, and results of the teaching course, showing that tailored, ERN-oriented, training can significantly enhance the profitable use of the CPMS. Results Throughout the training course, 45 professionals learned how to use the many features of the CPMS, eventually opening 98 panels of discussion—amounting to 82% of the total panels included in the EURO-NMD. Since clinical, genetic, diagnostic, and therapeutic data of patients can be securely stored within the platform, we also highlight the importance of this platform as an effective tool to discuss and share clinical cases, in order to ease both case solving and data storing. Conclusions In this paper, we discuss how similar course could help implementing the use of the platform, highlighting strengths and weaknesses of e-health for ERNs. The expected result is the creation of a “map” of neuromuscular patients across Europe that might be improved by a wider use of CPMS