45 research outputs found

    Biotechnology can Improve a Traditional Product as Table Olives

    Get PDF
    Table olives are fermented vegetables very popular in the world and especially in the Mediterranean countries. Five main styles (Spanish or Sevillian, Castelvetrano, Siciliano, Californian, and Greek) are diffused to produce commercial products, beside several traditional styles. Although the main preparation methods of table olives are known for a long time, they are not yet optimized systems, and each of them is characterized by advantages and disadvantages. The use of NaOH for green olive debittering is responsible for the elimination of many aroma compounds and nutritionally important molecules. High volumes of heavily contaminated wastewaters are produced during olive processing. Spontaneous fermentation processes used to ferment black or green olives are difficult either to monitor or control. Microbial starters, selected for specific bio/technological and safety traits, can be useful to (i) improve the table olives organoleptic characteristics, (ii) control the fermentation process and significantly reduce the time to obtain a final product, (iii) monitor the correct evolution of the process, (iv) ensure the maintenance and/or improvement of nutritional and healthy features of the product, (v) protect table olives from undesired spoilage and pathogenic microorganisms, (vi) produce table olives as a carrier of microorganisms with probiotics characters, and (vii) enhance product stability and shelf life

    Selection of indigenous yeast strains for the production of sparkling wines from native Apulian grape varieties

    Get PDF
    Abstract We report the first polyphasic characterization of native Saccharomyces cerevisiae in order to select candidate strains for the design of starter cultures tailored for Apulian sparkling wines obtained from local grape variety. In addition, it is the first survey in our region that propose the selection of autochthonous starter cultures for sparkling wine i) including a preliminary tailored genotypic and technological screening, and ii) monitoring analytical contribution during secondary fermentation in terms of volatile compounds (VOCs). Furthermore, we exploit the potential contribute of autochthonous cultures throughout the productive chain, including the possible improvement of base wine. One representative strain from each cluster was characterized i) for tolerance to abiotic and biotic stressors peculiar of sparkling wine fermentation, ii) for the performances in base wine production, and iii) for the aptitudes to promote in-bottle secondary fermentation in white and rose sparkling wines, both obtained from Apulian grape varieties. Genetic characterization led to group 164 S. cerevisiae in 16 genetic clusters based on interdelta profiles. Stress tolerance assays shown a certain correlation with fermentative attitude. Our evidences demonstrated a different fermentative behavior and release of VOCs of the different strains in association with primary and secondary fermentations and as function of wine and rose sparkling wine. Furthermore, performances in white/rose sparkling wines have been found to be strain-dependent characters. Overall, we propose different strains as biotechnological resources suitable to improve the quality of regional sparkling wines and to provide a driver of innovation/segmentation in the market

    Autochthonous fermentation starters for the industrial production of Negroamaro wines

    Get PDF
    Abstract The aim of the present study was to establish a new procedure for the oenological selection of Saccharomyces cerevisiae strains isolated from natural must fermentations of an important Italian grape cultivar, denoted as "Negroamaro". For this purpose, 108 S. cerevisiae strains were selected as they did not produce H2S and then assayed by microfermentation tests. The adopted procedure made it possible to identify 10 strains that were low producers of acetic acid and hydrogen sulphide and showed that they completed sugar consumption during fermentation. These strains were characterized for their specific oenological and technological properties and, two of them, strains 6993 and 6920, are good candidates as industrial starter cultures. A novel protocol was set up for their biomass production and they were employed for industrial-scale fermentation in two industrial cellars. The two strains successfully dominated the fermentation process and contributed to increasing the wines' organoleptic quality. The proposed procedure could be very effective for selecting "company-specific" yeast strains, ideal for the production of typical regional wines. "Winery" starter cultures could be produced on request in a small plant just before or during the vintage season and distributed as a fresh liquid concentrate culture

    New insights into the oenological significance of Candida zemplinina. Impact of selected autochthonous strains on the volatile profile of Apulian wines

    Get PDF
    In this investigation, we explored the oenological significance of Candida zemplinina (syn. Starmerella bacillaris) isolates from Apulian grape musts. Moreover, we provide the first evidence of the impact of different C. zemplinina strains on the wine aromatic properties tested as monocultures. We described the diversity of C. zemplinina strains isolated from grapes and the variability of ‘volatile’ phenotypes associated with this intraspecific variability. Thirty-three isolates were characterized at strain level by PCR-based approach and, among these, 16 strains were identified and then tested by microfermentation tests carried out in grape must. Analyzed strains were low producers of acetic acid and hydrogen sulphide, not able to decarboxylate a panel of representative amino acids, whereas they showed fructophilic character and significant glycerol production. Volatile profiles of produced wines were investigated by gas chromatography–mass spectrometry. The Odor Activity Values of all molecules were calculated and 12 compounds showed values above their odor thresholds. Two selected strains (35NC1 and 15PR1) could be considered as possible starter cultures since they were able to positively affect the sensory properties of obtained wine. This report firstly supplies evidence on the strain-specific impact of different C. zemplinina strains on the final aroma of produced wines

    Patè Olive Cake: Possible Exploitation of a By-Product for Food Applications

    Get PDF
    Patè Olive Cake (POC) is a new by-product derived from recently introduced new decanters in the olive oil production process. POC, is essentially composed of water, olive pulp and olive skin, and is rich in several valuable bioactive compounds. Moreover, it still contains about 8–12% residual olive oil. We characterized the main bioactive compounds in POC from black olives (cv. Leccino and Cellina di Nardò) and also verified the biotechnological aptitude of selected yeast and lactic acid bacteria from different sources, in transforming POC into a new fermented product. The strategy of sequential inoculum of Saccharomyces cerevisiae and Leuconostoc mesenteroides was successful in driving the fermentation process. In fermented POC total levels of phenols were slightly reduced when compared with a non-fermented sample nevertheless the content of the antioxidant hydroxytyrosol showed increased results. The total levels of triterpenic acids, carotenoids, and tocochromanols results were almost unchanged among the samples. Sensory notes were significantly improved after fermentation due to the increase of superior alcohols, esters, and acids. The results reported indicate a possible valorisation of this by-product for the preparation of food products enriched in valuable healthy compounds

    Use of Multivariate Statistics in the Processing of Data on Wine Volatile Compounds Obtained by HS-SPME-GC-MS

    No full text
    This review takes a snapshot of the main multivariate statistical techniques and methods used to process data on the concentrations of wine volatile molecules extracted by means of solid phase micro-extraction and analyzed using GC-MS. Hypothesis test, exploratory analysis, regression models, and unsupervised and supervised pattern recognition methods are illustrated and discussed. Several applications in the wine volatolomic sector are described to highlight different interactions among the various matrix components and volatiles. In addition, the use of Artificial Intelligence-based methods is discussed as an innovative class of methods for validating wine varietal authenticity and geographical traceability

    Advances in Microbial Fermentation Processes

    No full text
    In the food sector, fermentation processes have been the object of great interest in regard to enhancing the yield, the quality, and the safety of the final product [...

    Effects of Time and Temperature on Stability of Bioactive Molecules, Color and Volatile Compounds during Storage of Grape Pomace Flour

    No full text
    Background: Grape pomace is highly attractive for the food industry as it contains numerous bioactive molecules relevant for human health. However, in order to exploit pomace flour as a functional food ingredient for food industry, it is important understand how long-term storage affects the stability of both bioactive molecules and volatile compounds, in addition to color. To this end, we analyzed whole pomace flour from red grape during a six-month storage period in the dark, either at 4 °C or 25 °C. Methods: The specific parameters monitored of grape pomace flour included: antioxidant activity (TEAC assay), total phenol content (Folin-Ciocalteu assay), phenol composition (high performance liquid chromatography), fatty acid composition (gas chromatography-mass spectrometry), volatile compound profiles (headspace-solid phase micro-extraction) and color. Results: Prolonged storage did not significantly affect total phenol content, antioxidant activity and characterized bioactive molecules (polyphenols, fatty acids). The only detected effect of storage was a slight whitening of the pomace flour and a small increase of volatile long chain esters and ketons after 6 months at 25 °C. Conclusions: The activity of several health-relevant bioactive compounds remained stable following storage of pomace flour for 6 months at 4 °C, supporting its possible use as a functional food ingredient

    Comprehensive identification and quantification of chlorogenic acids in sweet cherry by tandem mass spectrometry techniques

    No full text
    This paper deals with an extensive analytical approach, which uses two complementary tandem mass spectrometry techniques, to characterize the chlorogenic acids (CGAs) present in a typical Italian sweet cherry variety (cv Ferrovia). Sixteen monoacyl-quinic acids and esters, five diacyl-quinic acids, three caffeoyl-quinic acids glycosides, and two caffeic acid hexoses were detected by HPLC-MSn analyses (MSn up to MS4), among which four methyl coumaroyl quinate and three methyl caffeoyl quinate isomers were tentatively identified in sweet cherries for the first time. HPLC-MS/MS analyses through multiple reaction monitoring (MRM) experiments showed that trans-3-O-caffeoylquinic acid, cis-3-O-coumaroylquinic acid, trans-3-O-coumaroylquinic acid, trans-5-O-caffeoylquinic acid, and methyl-3-O-caffeoyl quinate were the main CGAs in the mature berries of cv Ferrovia. Considering that CGAs can have several health benefits depending on their amount but also on their structural features, the results of this study provide new insight into the knowledge of the quali-quantitative profile of these phytochemicals in a widespread fruit such as sweet cherry. © 2018 Elsevier Inc
    corecore