11 research outputs found

    Electrochemical Sensor Detecting Free Sulfhydryl Groups: Evaluation of Milk Heat Treatment

    Get PDF
    We describe a new and rapid method for the evaluation of reactive sulfhydryl groups in whey proteins obtained after precipitation of casein by acetic acid at pH 4.6. The procedure is based on the use of a wire tungsten electrode operating at -0.2 V versus saturated calomel electrode in flow injection analysis. The method was applied to raw milks and to commercial pasteurized and UHT milks. Results showed that the tungsten electrode constituted a robust amperometric sensor that could be used to differentiate milks that underwent different heat treatments. The decrease of thiol content in the whey proteins from samples was in agreement with the whey protein content found by HPLC. The procedure is suitable for on-line quality control of heat-treated milks

    Polymer Composites Containing Gated Mesoporous Materials for On-Command Controlled Release

    Full text link
    Polyamidic nanofibrous membranes containing gated silica mesoporous particles, acting as carriers, are described as novel hybrid composite materials for encapsulation and on-command delivery of garlic extracts. The carrier system consists of MCM-41 solids functionalized in the outer surface, with linear polyamines (solid P1) and with hydrolyzed starch (solid P2), both acting as molecular gates. Those particles were adsorbed on electospun nylon-6 nanofibrous membranes yielding to composite materials M1 and M2. FE-SEM analysis confirmed the presence of particles incorporated on the nylon nanofibers. The release of the entrapped molecules (garlic extract) from the P1, P2, M1, and M2 materials was evaluated using cyclic voltammetry measurements. Electrochemical studies showed that at acidic pH P1 and M1 were unable to release their entrapped cargo (closed gate), whereas at neutral pH both materials release their loading (open gate). Dealing with P2 and M2 materials, in the absence of pancreatin a negligible release is observed (closed gate), whereas in the presence of enzyme the load is freely to diffuse to the solution. These newly developed composite nanomaterials, provide a homogeneous easy-to-handle system with controlled delivery and bioactive-protective features, having potential applications on pharmacology, medical and engineering fields.The authors wish to express their gratitude to the Generalitat Valenciana (Grisolia scholarship 2011/012, project PROM-ETEO/2009/016), Spanish Government (MINECO Projects AGL2012-39597-C02-01, AGL2012-39597-C02-02 and MAT2012-38429-C04-01) and the CIBER-BBN for their support. IILA thanks DISTAM and Universita degli di Milano for a specialization scholarship. We would also like to thank the Institut de Ciencia dels Materials (ICMUV) and to the Microscopy Service of the Universitat Politecnica de Valencia for technical support. We thank Roquette for the Glucidex samples.Acosta Romero, C.; Pérez Esteve, E.; Fuenmayor, CA.; Benedetti, S.; Cosio, MS.; Soto Camino, J.; Sancenón Galarza, F.... (2014). Polymer Composites Containing Gated Mesoporous Materials for On-Command Controlled Release. ACS Applied Materials and Interfaces. 6(9):6453-6460. https://doi.org/10.1021/am405939y645364606

    Debittering of Grape Juice by Electrospun Nylon Nanofibrous Membranes: Impact of Filtration on Physicochemical, Functional, and Sensory Properties

    No full text
    The effect of electrospun nylon-6 nanofibrous membranes (NFMs) on the concentration of bitter compounds and antioxidants of grapefruit juices during dead-end filtration processes was studied. Filtration experiments with aqueous standard solutions of different molecules showed that NFMs retain low molecular weight antioxidants (i.e., ascorbic and caffeic acids) only at early filtration stages, whereas they remove bitter glycosylated phenolics (i.e., naringin and narirutin) at a more stable ratio, variable according to the membrane thickness. Experiments with fresh grapefruit juice of two varieties (pink and yellow) showed that NFM-filtration reduces (17 to 30%) flavanones associated with the immediate bitterness and allows for the complete removal (>99.9%) of limonin, responsible for the persistent bitterness of many citrus juices. In contrast, the same process causes a lower loss of ascorbic acid (5%) and does not affect acidity, nor sugar concentration. The results confirmed that NFMs feature permselectivity towards bitterness-related compounds. This work highlights the NFM potential as filter devices for the selective reduction of the bitter terpenoid (limonin) and glycosylated flavonoids (naringin and narirutin) from grape juice citrus juices in the production of industrially-relevant beverages

    Electrochemical detection of peanuts at trace levels in foods using a magnetoimmunosensor for the allergenic protein Ara h 2

    No full text
    A highly sensitive disposable amperometric magnetoimmunosensor for the rapid determination of Ara h 2 protein, one of the major peanut allergens, is reported. The approach uses a sandwich configuration involving selective capture and detector antibodies and carboxylic acid-modified magnetic beads (HOOC-MBs). Detector antibodies are labeled with HRP-conjugated secondary antibodies and the MBs bearing the immunoconjugates are magnetically captured on surface of a disposable screen-printed carbon electrode (SPCE). The affinity reactions are monitored amperometrically at −0.20 V (vs a Ag pseudo-reference electrode) in the presence of hydroquinone (HQ) as electron transfer mediator and upon addition of hydrogen peroxide as the enzyme substrate. The developed magnetoimmunosensor exhibits a wide range of linearity between 87 and 10,000 pg/mL Ara h 2 with a detection limit of 26 pg/mL as well as a great selectivity against other non-target proteins. The magnetoimmunosensing platform was successfully applied for the detection of Ara h 2 in different food extracts. After an appropriate sample dilution no matrix effects were observable. The developed methodology was able to detect trace amounts of the peanut allergen (0.0005% or 5.0 mg/kg) in wheat flour spiked samples. The results correlated properly with those provided by a commercial ELISA kit.Spanish Ministerio de Economía y CompetitividadNANOAVANSENS Program from the Comunidad de MadridCOFIN 2010–2011Depto. de Química AnalíticaFac. de Ciencias QuímicasTRUEpu

    Polymer Composites Containing Gated Mesoporous Materials for On-Command Controlled Release

    No full text
    Polyamidic nanofibrous membranes containing gated silica mesoporous particles, acting as carriers, are described as novel hybrid composite materials for encapsulation and on-command delivery of garlic extracts. The carrier system consists of MCM-41 solids functionalized in the outer surface, with linear polyamines (solid <b>P1</b>) and with hydrolyzed starch (solid <b>P2</b>), both acting as molecular gates. Those particles were adsorbed on electospun nylon-6 nanofibrous membranes yielding to composite materials <b>M1</b> and <b>M2</b>. FE-SEM analysis confirmed the presence of particles incorporated on the nylon nanofibers. The release of the entrapped molecules (garlic extract) from the <b>P1</b>, <b>P2</b>, <b>M1</b>, and <b>M2</b> materials was evaluated using cyclic voltammetry measurements. Electrochemical studies showed that at acidic pH <b>P1</b> and <b>M1</b> were unable to release their entrapped cargo (closed gate), whereas at neutral pH both materials release their loading (open gate). Dealing with <b>P2</b> and <b>M2</b> materials, in the absence of pancreatin a negligible release is observed (closed gate), whereas in the presence of enzyme the load is freely to diffuse to the solution. These newly developed composite nanomaterials, provide a homogeneous easy-to-handle system with controlled delivery and bioactive-protective features, having potential applications on pharmacology, medical and engineering field

    Lactoferrin Against SARS-CoV-2: In Vitro and In Silico Evidences

    No full text
    Lactoferrin (Lf) is a cationic glycoprotein synthetized by exocrine glands and is present in all human secretions. It is also secreted by neutrophils in infection and inflammation sites. This glycoprotein possesses antimicrobial activity due to its capability to chelate two ferric ions per molecule, as well as to interact with bacterial and viral anionic surface components. The cationic features of Lf bind to cells, protecting the host from bacterial and viral injuries. Its anti-inflammatory activity is mediated by the ability to enter inside the nucleus of host cells, thus inhibiting the synthesis of proinflammatory cytokine genes. In particular, Lf down-regulates the synthesis of IL-6, which is involved in iron homeostasis disorders and leads to intracellular iron overload, favoring viral replication and infection. The well-known antiviral activity of Lf has been demonstrated against DNA, RNA, and enveloped and naked viruses and, therefore, Lf could be efficient in counteracting also SARS-CoV-2 infection. For this purpose, we performed in vitro assays, proving that Lf exerts an antiviral activity against SARS-COV-2 through direct attachment to both SARS-CoV-2 and cell surface components. This activity varied according to concentration (100/500 mu g/ml), multiplicity of infection (0.1/0.01), and cell type (Vero E6/Caco-2 cells). Interestingly, the in silico results strongly supported the hypothesis of a direct recognition between Lf and the spike S glycoprotein, which can thus hinder viral entry into the cells. These in vitro observations led us to speculate a potential supplementary role of Lf in the management of COVID-19 patients

    Lactoferrin as Antiviral Treatment in COVID-19 Management: Preliminary Evidence

    No full text
    Lactoferrin (Lf), a multifunctional cationic glycoprotein synthesized by exocrine glands and neutrophils, possesses an in vitro antiviral activity against SARS-CoV-2. Thus, we conducted an in vivo preliminary study to investigate the antiviral effect of oral and intranasal liposomal bovine Lf (bLf) in asymptomatic and mild-to-moderate COVID-19 patients. From April 2020 to June 2020, a total of 92 mild-to-moderate (67/92) and asymptomatic (25/92) COVID-19 patients were recruited and divided into three groups. Thirty-two patients (14 hospitalized and 18 in home-based isolation) received only oral and intranasal liposomal bLf; 32 hospitalized patients were treated only with standard of care (SOC) treatment; and 28, in home-based isolation, did not take any medication. Furthermore, 32 COVID-19 negative, untreated, healthy subjects were added for ancillary analysis. Liposomal bLf-treated COVID-19 patients obtained an earlier and significant (p &lt; 0.0001) SARS-CoV-2 RNA negative conversion compared to the SOC-treated and untreated COVID-19 patients (14.25 vs. 27.13 vs. 32.61 days, respectively). Liposomal bLf-treated COVID-19 patients showed fast clinical symptoms recovery compared to the SOC-treated COVID-19 patients. In bLf-treated patients, a significant decrease in serum ferritin, IL-6, and D-dimers levels was observed. No adverse events were reported. These observations led us to speculate a potential role of bLf in the management of mild-to-moderate and asymptomatic COVID-19 patients
    corecore