24 research outputs found

    NCOA4-mediated ferritinophagy in macrophages is crucial to sustain erythropoiesis in mice

    Get PDF
    The Nuclear Receptor Coactivator 4 (NCOA4) promotes ferritin degradation and Ncoa4-ko mice in C57BL/6 background show microcytosis and mild anemia, aggravated by iron deficiency. To understand tissue specific contribution of NCOA4-mediated ferritinophagy we explored the effect of Ncoa4 genetic ablation in the iron-rich strain Sv129/J. Increased body iron content protects mice from anemia and, in basal conditions, Sv129/J Ncoa4-ko mice show only microcytosis; nevertheless, when fed a low-iron diet they develop a more severe anemia compared to wild-type animals. Reciprocal bone marrow (BM) transplantation from wild-type donors into Ncoa4-ko and from Ncoa4-ko into wild-type mice revealed that microcytosis and susceptibility to iron deficiency anemia depend on BM-derived cells. Erythropoiesis reconstitution with RBC count and hemoglobin normalization occurred at the same rate in transplanted animals independently of the genotype. Importantly, NCOA4 loss did not affect terminal erythropoiesis in iron deficiency, both in total and specific BM Ncoa4-ko animals compared to controls. On the contrary, upon a low iron diet, spleen from wild-type animals with Ncoa4-ko BM displayed marked iron retention compared to (wild-type BM) controls, indicating defective macrophage iron release in the former. Thus, EPO administration failed to mobilize iron from stores in Ncoa4-ko animals. Furthermore, Ncoa4 inactivation in thalassemic mice did not worsen the hematological phenotype. Overall our data reveal a major role for NCOA4-mediated ferritinophagy in macrophages to favor iron release for erythropoiesis, especially in iron deficiency

    Unique molecular and functional features of extramedullary hematopoietic stem and progenitor cell reservoirs in humans

    Full text link
    Rare hematopoietic stem and progenitor cell (HSPC) pools outside the bone marrow (BM) contribute to blood production in stress and disease but remain ill-defined. Although non-mobilized peripheral blood (PB) is routinely sampled for clinical management, the diagnosis and monitoring potential of PB HSPCs remains untapped, as no healthy PB HSPC baseline has been reported. Here we comprehensively delineate human extramedullary HSPC compartments comparing spleen, PB and mobilized PB (mPB) to BM using single-cell RNA-seq and/or functional assays. We uncover HSPC features shared by extramedullary tissues and others unique to PB. First, in contrast to actively dividing BM HSPCs, we find no evidence of substantial ongoing hematopoiesis in extramedullary tissues at steady state, but report increased splenic HSPC proliferative output during stress erythropoiesis. Second, extramedullary stem cells/multipotent progenitors (HSC/MPPs) from spleen, PB and mPB share a common transcriptional signature and increased abundance of lineage-primed subsets compared to BM. Third, healthy PB HSPCs display a unique bias towards erythroid-megakaryocytic differentiation. At HSC/MPP level, this is functionally imparted by a subset of phenotypic CD71+ HSC/MPPs, exclusively producing erythrocytes and megakaryocytes, highly abundant in PB but rare in other adult tissues. Finally, the unique erythroid-megakaryocytic-skewing of PB is perturbed with age, in essential thrombocythemia and in beta-thalassemia. Collectively, we identify extramedullary lineage-primed HSPC reservoirs that are non-proliferative in situ and report involvement of splenic HSPCs during demand-adapted hematopoiesis. Our data also establish aberrant composition and function of circulating HSPCs as potential clinical indicators of BM dysfunction

    Unique molecular and functional features of extramedullary hematopoietic stem and progenitor cell reservoirs in humans.

    Get PDF
    Rare hematopoietic stem and progenitor cell (HSPC) pools outside the bone marrow (BM) contribute to blood production in stress and disease but remain ill-defined. Although nonmobilized peripheral blood (PB) is routinely sampled for clinical management, the diagnosis and monitoring potential of PB HSPCs remain untapped, as no healthy PB HSPC baseline has been reported. Here we comprehensively delineate human extramedullary HSPC compartments comparing spleen, PB, and mobilized PB to BM using single-cell RNA-sequencing and/or functional assays. We uncovered HSPC features shared by extramedullary tissues and others unique to PB. First, in contrast to actively dividing BM HSPCs, we found no evidence of substantial ongoing hematopoiesis in extramedullary tissues at steady state but report increased splenic HSPC proliferative output during stress erythropoiesis. Second, extramedullary hematopoietic stem cells/multipotent progenitors (HSCs/MPPs) from spleen, PB, and mobilized PB share a common transcriptional signature and increased abundance of lineage-primed subsets compared with BM. Third, healthy PB HSPCs display a unique bias toward erythroid-megakaryocytic differentiation. At the HSC/MPP level, this is functionally imparted by a subset of phenotypic CD71+ HSCs/MPPs, exclusively producing erythrocytes and megakaryocytes, highly abundant in PB but rare in other adult tissues. Finally, the unique erythroid-megakaryocytic-skewing of PB is perturbed with age in essential thrombocythemia and β-thalassemia. Collectively, we identify extramedullary lineage-primed HSPC reservoirs that are nonproliferative in situ and report involvement of splenic HSPCs during demand-adapted hematopoiesis. Our data also establish aberrant composition and function of circulating HSPCs as potential clinical indicators of BM dysfunction

    Efficient Ex Vivo Engineering and Expansion of Highly Purified Human Hematopoietic Stem and Progenitor Cell Populations for Gene Therapy

    No full text
    Summary: Ex vivo gene therapy based on CD34+ hematopoietic stem cells (HSCs) has shown promising results in clinical trials, but genetic engineering to high levels and in large scale remains challenging. We devised a sorting strategy that captures more than 90% of HSC activity in less than 10% of mobilized peripheral blood (mPB) CD34+ cells, and modeled a transplantation protocol based on highly purified, genetically engineered HSCs co-infused with uncultured progenitor cells. Prostaglandin E2 stimulation allowed near-complete transduction of HSCs with lentiviral vectors during a culture time of less than 38 hr, mitigating the negative impact of standard culture on progenitor cell function. Exploiting the pyrimidoindole derivative UM171, we show that transduced mPB CD34+CD38− cells with repopulating potential could be expanded ex vivo. Implementing these findings in clinical gene therapy protocols will improve the efficacy, safety, and sustainability of gene therapy and generate new opportunities in the field of gene editing. : In this article, Gentner and colleagues undertake a comprehensive strategy to advance ex vivo genetic engineering of HSCs for gene therapy. They experimentally define an optimal strategy to purify HSCs, which allows uncoupling long-term from short-term hematopoietic reconstitution, and implement ex vivo conditions that best preserve their biological properties applying novel transduction-enhancing compounds and pyrimidoindole derivatives to support HSC expansion. Keywords: HSC gene therapy, purified HSCs, HSC expansion, lentiviral vector transduction, prostaglandin E2, UM17

    Hematopoietic stem cell function in β-thalassemia is impaired and is rescued by targeting the bone marrow niche

    No full text
    Hematopoietic stem cells (HSCs) are regulated by signals from the bone marrow (BM) niche, which tune hematopoiesis at steady state and in hematologic disorders. To understand the HSC-niche interactions in altered non-malignant homeostasis, we elected as a paradigm β-thalassemia, a hemoglobin disorder. In this severe congenital anemia, secondary alterations to the primary hemoglobin defect have a potential impact on HSC-niche crosstalk. Here we report that HSCs in thalassemic mice (th3) have an impaired function, caused by the interaction with an altered BM niche. The HSC self-renewal defect is rescued upon transplantation into a normal microenvironment, thus proving the active role of BM stroma. Consistently with the common finding of osteoporosis in patients, we found reduced bone deposition with decreased levels of parathyroid hormone (PTH), which is a key regulator of bone metabolism but also of HSC activity. In vivo activation of PTH signaling through the reestablished Jagged1 and osteopontin levels correlates with the rescue of the functional pool of th3 HSCs by correcting HSC-niche crosstalk. Reduced HSC quiescence is confirmed in thalassemic patients, along with altered features of the BM stromal niche. Our findings uncover a defect of HSCs in β-thalassemia induced by an altered BM microenvironment and provide new relevant insight for improving transplantation and gene therapy approaches

    Lentiviral vector integration in the human genome induces alternative splicing and generates aberrant transcripts

    Get PDF
    Retroviral vectors integrate in genes and regulatory elements and may cause transcriptional deregulation of gene expression in target cells. Integration into transcribed genes also has the potential to deregulate gene expression at the posttranscriptional level by interfering with splicing and polyadenylation of primary transcripts. To examine the impact of retroviral vector integration on transcript splicing, we transduced primary human cells or cultured cells with HIV-derived vectors carrying a reporter gene or a human β-globin gene under the control of a reduced-size locus-control region (LCR). Cells were randomly cloned and integration sites were determined in individual clones. We identified aberrantly spliced, chimeric transcripts in more than half of the targeted genes in all cell types. Chimeric transcripts were generated through the use of constitutive and cryptic splice sites in the HIV 5ι long terminal repeat and gag gene as well as in the β-globin gene and LCR. Compared with constitutively spliced transcripts, most aberrant transcripts accumulated at a low level, at least in part as a consequence of nonsense-mediated mRNA degradation. A limited set of cryptic splice sites caused the majority of aberrant splicing events, providing a strategy for recoding lentiviral vector backbones and transgenes to reduce their potential posttranscriptional genotoxicity
    corecore