2,120 research outputs found
Activation of c-Jun-N-terminal kinase is required for apoptosis triggered by glutathione disulfide in neuroblastoma cells
Changes in intracellular redox status are crucial events that trigger downstream proliferation or death responses through activation of specific signaling pathways. Moreover, cell responses to oxidative challenge may depend on the pattern of redox-sensitive molecular factors. The stress-activated protein kinases c-Jun-N-terminal kinase (JNK) and p38 MAP kinase (p38(MAPK)) are implicated in different forms of apoptotic neuronal cell death. Here, we investigated the effects, on neuroblastoma cells, of the prooxidant molecule GSSG, which we previously demonstrated to be an efficient proapoptotic compound able to activate the p38(MAPK) death pathway in promonocytic cells. We found that neuroblastoma cells are not prone to GSSG-induced apoptosis, although the treatment slightly induced growth arrest through the accumulation of p53 and its downstream target gene, p21. However, GSSG treatment became cytotoxic when cells were previously depleted of intracellular GSH content. Under this condition, apoptosis was triggered by an increased production of superoxide that led to a specific activation of the JNK-dependent pathway. The involvement of superoxide and JNK was demonstrated by cell death inhibition in experiments carried out in the presence of Cu,Zn superoxide dismutase or with specific inhibitors of JNK activity. Our data give support to the studies that indicate preferential requirements for the involvement of stress-activated kinases in apoptotic neuronal cells. (c) 2005 Elsevier Inc. All rights reserved
Genomic instability in human cancer: molecular insights and opportunities for therapeutic attack and prevention through diet and nutrition
Genomic instability can initiate cancer, augment progression, and influence the overall prognosis of the affected patient. Genomic instability arises from many different pathways, such as telomere damage, centrosome amplification, epigenetic modifications, and DNA damage from endogenous and exogenous sources, and can be perpetuating, or limiting, through the induction of mutations or aneuploidy, both enabling and catastrophic. Many cancer treatments induce DNA damage to impair cell division on a global scale but it is accepted that personalized treatments, those that are tailored to the particular patient and type of cancer, must also be developed. In this review, we detail the mechanisms from which genomic instability arises and can lead to cancer, as well as treatments and measures that prevent genomic instability or take advantage of the cellular defects caused by genomic instability. In particular, we identify and discuss five priority targets against genomic instability: (1) prevention of DNA damage; (2) enhancement of DNA repair; (3) targeting deficient DNA repair; (4) impairing centrosome clustering; and, (5) inhibition of telomerase activity. Moreover, we highlight vitamin D and B, selenium, carotenoids, PARP inhibitors, resveratrol, and isothiocyanates as priority approaches against genomic instability. The prioritized target sites and approaches were cross validated to identify potential synergistic effects on a number of important areas of cancer biology
Constraints on the χ_(c1) versus χ_(c2) polarizations in proton-proton collisions at √s = 8 TeV
The polarizations of promptly produced χ_(c1) and χ_(c2) mesons are studied using data collected by the CMS experiment at the LHC, in proton-proton collisions at √s=8 TeV. The χ_c states are reconstructed via their radiative decays χ_c → J/ψγ, with the photons being measured through conversions to e⁺e⁻, which allows the two states to be well resolved. The polarizations are measured in the helicity frame, through the analysis of the χ_(c2) to χ_(c1) yield ratio as a function of the polar or azimuthal angle of the positive muon emitted in the J/ψ → μ⁺μ⁻ decay, in three bins of J/ψ transverse momentum. While no differences are seen between the two states in terms of azimuthal decay angle distributions, they are observed to have significantly different polar anisotropies. The measurement favors a scenario where at least one of the two states is strongly polarized along the helicity quantization axis, in agreement with nonrelativistic quantum chromodynamics predictions. This is the first measurement of significantly polarized quarkonia produced at high transverse momentum
- …