1,938 research outputs found
Carotid body chemosensitivity: Early biomarker of dysmetabolism in humans
info:eu-repo/semantics/publishedVersio
Assessment of Translocator Protein Density, as Marker of Neuroinflammation, in Major Depressive Disorder: A Pilot, Multicenter, Comparative, Controlled, Brain PET Study (INFLADEP Study)
Background: Major depressive disorder (MDD) is a serious public health problem with high lifetime prevalence (4.4–20%) in the general population. The monoamine hypothesis is the most widespread etiological theory of MDD. Also, recent scientific data has emphasized the importance of immuno-inflammatory pathways in the pathophysiology of MDD. The lack of data on the magnitude of brain neuroinflammation in MDD is the main limitation of this inflammatory hypothesis. Our team has previously demonstrated the relevance of [18F] DPA-714 as a neuroinflammation biomarker in humans. We formulated the following hypotheses for the current study: (i) Neuroinflammation in MDD can be measured by [18F] DPA-714; (ii) its levels are associated with clinical severity; (iii) it is accompanied by anatomical and functional alterations within the frontal-subcortical circuits; (iv) it is a marker of treatment resistance.Methods: Depressed patients will be recruited throughout 4 centers (Bordeaux, Montpellier, Tours, and Toulouse) of the French network from 13 expert centers for resistant depression. The patient population will be divided into 3 groups: (i) experimental group—patients with current MDD (n = 20), (ii) remitted depressed group—patients in remission but still being treated (n = 20); and, (iii) control group without any history of MDD (n = 20). The primary objective will be to compare PET data (i.e., distribution pattern of neuroinflammation) between the currently depressed group and the control group. Secondary objectives will be to: (i) compare neuroinflammation across groups (currently depressed group vs. remitted depressed group vs. control group); (ii) correlate neuroinflammation with clinical severity across groups; (iii) correlate neuroinflammation with MRI parameters for structural and functional integrity across groups; (iv) correlate neuroinflammation and peripheral markers of inflammation across groups.Discussion: This study will assess the effects of antidepressants on neuroinflammation as well as its role in the treatment response. It will contribute to clarify the putative relationships between neuroinflammation quantified by brain neuroimaging techniques and peripheral markers of inflammation. Lastly, it is expected to open innovative and promising therapeutic perspectives based on anti-inflammatory strategies for the management of treatment-resistant forms of MDD commonly seen in clinical practice.Clinical trial registration (reference: NCT03314155): https://www.clinicaltrials.gov/ct2/show/NCT03314155?term=neuroinflammation&cond=depression&cntry=FR&rank=
XAF1 as a modifier of p53 function and cancer susceptibility
Cancer risk is highly variable in carriers of the common TP53-R337H founder allele, possibly due to the influence of modifier genes. Whole-genome sequencing identified a variant in the tumor suppressor XAF1 (E134*/Glu134Ter/rs146752602) in a subset of R337H carriers. Haplotype-defining variants were verified in 203 patients with cancer, 582 relatives, and 42,438 newborns. The compound mutant haplotype was enriched in patients with cancer, conferring risk for sarcoma (P = 0.003) and subsequent malignancies (P = 0.006). Functional analyses demonstrated that wild-type XAF1 enhances transactivation of wild-type and hypomorphic TP53 variants, whereas XAF1-E134* is markedly attenuated in this activity. We propose that cosegregation of XAF1-E134* and TP53-R337H mutations leads to a more aggressive cancer phenotype than TP53-R337H alone, with implications for genetic counseling and clinical management of hypomorphic TP53 mutant carriers.Fil: Pinto, Emilia M.. St. Jude Children's Research Hospital; Estados UnidosFil: Figueiredo, Bonald C.. Instituto de Pesquisa Pelé Pequeno Principe; BrasilFil: Chen, Wenan. St. Jude Children's Research Hospital; Estados UnidosFil: Galvao, Henrique C.R.. Hospital de Câncer de Barretos; BrasilFil: Formiga, Maria Nirvana. A.c.camargo Cancer Center; BrasilFil: Fragoso, Maria Candida B.V.. Universidade de Sao Paulo; BrasilFil: Ashton Prolla, Patricia. Universidade Federal do Rio Grande do Sul; BrasilFil: Ribeiro, Enilze M.S.F.. Universidade Federal do Paraná; BrasilFil: Felix, Gabriela. Universidade Federal da Bahia; BrasilFil: Costa, Tatiana E.B.. Hospital Infantil Joana de Gusmao; BrasilFil: Savage, Sharon A.. National Cancer Institute; Estados UnidosFil: Yeager, Meredith. National Cancer Institute; Estados UnidosFil: Palmero, Edenir I.. Hospital de Câncer de Barretos; BrasilFil: Volc, Sahlua. Hospital de Câncer de Barretos; BrasilFil: Salvador, Hector. Hospital Sant Joan de Deu Barcelona; EspañaFil: Fuster Soler, Jose Luis. Hospital Clínico Universitario Virgen de la Arrixaca; EspañaFil: Lavarino, Cinzia. Hospital Sant Joan de Deu Barcelona; EspañaFil: Chantada, Guillermo Luis. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. St. Jude Children's Research Hospital; Estados UnidosFil: Vaur, Dominique. Comprehensive Cancer Center François Baclesse; FranciaFil: Odone Filho, Vicente. Universidade de Sao Paulo; BrasilFil: Brugières, Laurence. Institut de Cancerologie Gustave Roussy; FranciaFil: Else, Tobias. University of Michigan; Estados UnidosFil: Stoffel, Elena M.. University of Michigan; Estados UnidosFil: Maxwell, Kara N.. University of Pennsylvania; Estados UnidosFil: Achatz, Maria Isabel. Hospital Sirio-libanês; BrasilFil: Kowalski, Luis. A.c.camargo Cancer Center; BrasilFil: De Andrade, Kelvin C.. National Cancer Institute; Estados UnidosFil: Pappo, Alberto. St. Jude Children's Research Hospital; Estados UnidosFil: Letouze, Eric. Centre de Recherche Des Cordeliers; FranciaFil: Latronico, Ana Claudia. Universidade de Sao Paulo; BrasilFil: Mendonca, Berenice B.. Universidade de Sao Paulo; BrasilFil: Almeida, Madson Q.. Universidade de Sao Paulo; BrasilFil: Brondani, Vania B.. Universidade de Sao Paulo; BrasilFil: Bittar, Camila M.. Universidade Federal do Rio Grande do Sul; BrasilFil: Soares, Emerson W.S.. Hospital Do Câncer de Cascavel; BrasilFil: Mathias, Carolina. Universidade Federal do Paraná; BrasilFil: Ramos, Cintia R.N.. Hospital de Câncer de Barretos; BrasilFil: Machado, Moara. National Cancer Institute; Estados UnidosFil: Zhou, Weiyin. National Cancer Institute; Estados UnidosFil: Jones, Kristine. National Cancer Institute; Estados UnidosFil: Vogt, Aurelie. National Cancer Institute; Estados UnidosFil: Klincha, Payal P.. National Cancer Institute; Estados UnidosFil: Santiago, Karina M.. A.c.camargo Cancer Center; BrasilFil: Komechen, Heloisa. Instituto de Pesquisa Pelé Pequeno Principe; BrasilFil: Paraizo, Mariana M.. Instituto de Pesquisa Pelé Pequeno Principe; BrasilFil: Parise, Ivy Z.S.. Instituto de Pesquisa Pelé Pequeno Principe; BrasilFil: Hamilton, Kayla V.. St. Jude Children's Research Hospital; Estados UnidosFil: Wang, Jinling. St. Jude Children's Research Hospital; Estados UnidosFil: Rampersaud, Evadnie. St. Jude Children's Research Hospital; Estados UnidosFil: Clay, Michael R.. St. Jude Children's Research Hospital; Estados UnidosFil: Murphy, Andrew J.. St. Jude Children's Research Hospital; Estados UnidosFil: Lalli, Enzo. Institut de Pharmacologie Moléculaire et Cellulaire; FranciaFil: Nichols, Kim E.. St. Jude Children's Research Hospital; Estados UnidosFil: Ribeiro, Raul C.. St. Jude Children's Research Hospital; Estados UnidosFil: Rodriguez-Galindo, Carlos. St. Jude Children's Research Hospital; Estados UnidosFil: Korbonits, Marta. Queen Mary University of London; Reino UnidoFil: Zhang, Jinghui. St. Jude Children's Research Hospital; Estados UnidosFil: Thomas, Mark G.. Colegio Universitario de Londres; Reino UnidoFil: Connelly, Jon P.. St. Jude Children's Research Hospital; Estados UnidosFil: Pruett-Miller, Shondra. St. Jude Children's Research Hospital; Estados UnidosFil: Diekmann, Yoan. Colegio Universitario de Londres; Reino UnidoFil: Neale, Geoffrey. St. Jude Children's Research Hospital; Estados UnidosFil: Wu, Gang. St. Jude Children's Research Hospital; Estados UnidosFil: Zambetti, Gerard P.. St. Jude Children's Research Hospital; Estados Unido
Association of HFE common mutations with Parkinson's disease, Alzheimer's disease and mild cognitive impairment in a Portuguese cohort
Background: Pathological brain iron deposition has been implicated as a source of neurotoxic reactive oxygen species in Alzheimer (AD) and Parkinson diseases (PD). Iron metabolism is associated with the gene hemochromatosis (HFE Human genome nomenclature committee ID: 4886), and mutations in HFE are a cause of the iron mismetabolism disease, hemochromatosis. Several reports have tested the association of HFE variants with neurodegenerative diseases, such as AD and PD with conflicting results.Methods: Genotypes were analysed for the two most common variants of HFE in a series of 130 AD, 55 Mild Cognitive Impairment (MCI) and 132 PD patients. Additionally, a series of 115 healthy age-matched controls was also screened.Results: A statistically significant association was found in the PD group when compared to controls, showing that the presence of the C282Y variant allele may confer higher risk for developing the disease.Conclusion: Taken together these results suggest that the common variants in HFE may be a risk factor for PD, but not for AD in the Portuguese population
Auto-retrato e auto-representação
info:eu-repo/semantics/publishedVersio
Elective Cancer Surgery in COVID-19-Free Surgical Pathways During the SARS-CoV-2 Pandemic: An International, Multicenter, Comparative Cohort Study.
PURPOSE: As cancer surgery restarts after the first COVID-19 wave, health care providers urgently require data to determine where elective surgery is best performed. This study aimed to determine whether COVID-19-free surgical pathways were associated with lower postoperative pulmonary complication rates compared with hospitals with no defined pathway. PATIENTS AND METHODS: This international, multicenter cohort study included patients who underwent elective surgery for 10 solid cancer types without preoperative suspicion of SARS-CoV-2. Participating hospitals included patients from local emergence of SARS-CoV-2 until April 19, 2020. At the time of surgery, hospitals were defined as having a COVID-19-free surgical pathway (complete segregation of the operating theater, critical care, and inpatient ward areas) or no defined pathway (incomplete or no segregation, areas shared with patients with COVID-19). The primary outcome was 30-day postoperative pulmonary complications (pneumonia, acute respiratory distress syndrome, unexpected ventilation). RESULTS: Of 9,171 patients from 447 hospitals in 55 countries, 2,481 were operated on in COVID-19-free surgical pathways. Patients who underwent surgery within COVID-19-free surgical pathways were younger with fewer comorbidities than those in hospitals with no defined pathway but with similar proportions of major surgery. After adjustment, pulmonary complication rates were lower with COVID-19-free surgical pathways (2.2% v 4.9%; adjusted odds ratio [aOR], 0.62; 95% CI, 0.44 to 0.86). This was consistent in sensitivity analyses for low-risk patients (American Society of Anesthesiologists grade 1/2), propensity score-matched models, and patients with negative SARS-CoV-2 preoperative tests. The postoperative SARS-CoV-2 infection rate was also lower in COVID-19-free surgical pathways (2.1% v 3.6%; aOR, 0.53; 95% CI, 0.36 to 0.76). CONCLUSION: Within available resources, dedicated COVID-19-free surgical pathways should be established to provide safe elective cancer surgery during current and before future SARS-CoV-2 outbreaks
Elective cancer surgery in COVID-19-free surgical pathways during the SARS-CoV-2 pandemic: An international, multicenter, comparative cohort study
PURPOSE As cancer surgery restarts after the first COVID-19 wave, health care providers urgently require data to determine where elective surgery is best performed. This study aimed to determine whether COVID-19–free surgical pathways were associated with lower postoperative pulmonary complication rates compared with hospitals with no defined pathway. PATIENTS AND METHODS This international, multicenter cohort study included patients who underwent elective surgery for 10 solid cancer types without preoperative suspicion of SARS-CoV-2. Participating hospitals included patients from local emergence of SARS-CoV-2 until April 19, 2020. At the time of surgery, hospitals were defined as having a COVID-19–free surgical pathway (complete segregation of the operating theater, critical care, and inpatient ward areas) or no defined pathway (incomplete or no segregation, areas shared with patients with COVID-19). The primary outcome was 30-day postoperative pulmonary complications (pneumonia, acute respiratory distress syndrome, unexpected ventilation). RESULTS Of 9,171 patients from 447 hospitals in 55 countries, 2,481 were operated on in COVID-19–free surgical pathways. Patients who underwent surgery within COVID-19–free surgical pathways were younger with fewer comorbidities than those in hospitals with no defined pathway but with similar proportions of major surgery. After adjustment, pulmonary complication rates were lower with COVID-19–free surgical pathways (2.2% v 4.9%; adjusted odds ratio [aOR], 0.62; 95% CI, 0.44 to 0.86). This was consistent in sensitivity analyses for low-risk patients (American Society of Anesthesiologists grade 1/2), propensity score–matched models, and patients with negative SARS-CoV-2 preoperative tests. The postoperative SARS-CoV-2 infection rate was also lower in COVID-19–free surgical pathways (2.1% v 3.6%; aOR, 0.53; 95% CI, 0.36 to 0.76). CONCLUSION Within available resources, dedicated COVID-19–free surgical pathways should be established to provide safe elective cancer surgery during current and before future SARS-CoV-2 outbreaks
- …