152 research outputs found

    Healthspan Enhancement by Olive Polyphenols in C. elegans Wild Type and Parkinson’s Models

    Get PDF
    Parkinson’s disease (PD) is the second most prevalent late-age onset neurodegenerative disorder, affecting 1% of the population after the age of about 60 years old and 4% of those over 80 years old, causing motor impairments and cognitive dysfunction. Increasing evidence indicates that Mediterranean diet (MD) exerts beneficial effects in maintaining health, especially during ageing and by the prevention of neurodegenerative disorders. In this regard, olive oil and its biophenolic constituents like hydroxytyrosol (HT) have received growing attention in the past years. Thus, in the current study we test the health-promoting effects of two hydroxytyrosol preparations, pure HT and Hidrox® (HD), which is hydroxytyrosol in its “natural” environment, in the established invertebrate model organism Caenorhabditis elegans. HD exposure led to much stronger beneficial locomotion effects in wild type worms compared to HT in the same concentration. Consistent to this finding, in OW13 worms, a PD-model characterized by α-synuclein expression in muscles, HD exhibited a significant higher effect on α-synuclein accumulation and swim performance than HT, an effect partly confirmed also in swim assays with the UA44 strain, which features α-synuclein expression in DA-neurons. Interestingly, beneficial effects of HD and HT treatment with similar strength were detected in the lifespan and autofluorescence of wild-type nematodes, in the neuronal health of UA44 worms as well as in the locomotion of rotenone-induced PD-model. Thus, the hypothesis that HD features higher healthspan-promoting abilities than HT was at least partly confirmed. Our study demonstrates that HD polyphenolic extract treatment has the potential to partly prevent or even treat ageing-related neurodegenerative diseases and ageing itself. Future investigations including mammalian models and human clinical trials are needed to uncover the full potential of these olive compounds

    Healthspan Enhancement by Olive Polyphenols in C. elegans Wild Type and Parkinson’s Models

    Get PDF
    Parkinson’s disease (PD) is the second most prevalent late-age onset neurodegenerative disorder, affecting 1% of the population after the age of about 60 years old and 4% of those over 80 years old, causing motor impairments and cognitive dysfunction. Increasing evidence indicates that Mediterranean diet (MD) exerts beneficial effects in maintaining health, especially during ageing and by the prevention of neurodegenerative disorders. In this regard, olive oil and its biophenolic constituents like hydroxytyrosol (HT) have received growing attention in the past years. Thus, in the current study we test the health-promoting effects of two hydroxytyrosol preparations, pure HT and Hidrox® (HD), which is hydroxytyrosol in its “natural” environment, in the established invertebrate model organism Caenorhabditis elegans. HD exposure led to much stronger beneficial locomotion effects in wild type worms compared to HT in the same concentration. Consistent to this finding, in OW13 worms, a PD-model characterized by α-synuclein expression in muscles, HD exhibited a significant higher effect on α-synuclein accumulation and swim performance than HT, an effect partly confirmed also in swim assays with the UA44 strain, which features α-synuclein expression in DA-neurons. Interestingly, beneficial effects of HD and HT treatment with similar strength were detected in the lifespan and autofluorescence of wild-type nematodes, in the neuronal health of UA44 worms as well as in the locomotion of rotenone-induced PD-model. Thus, the hypothesis that HD features higher healthspan-promoting abilities than HT was at least partly confirmed. Our study demonstrates that HD polyphenolic extract treatment has the potential to partly prevent or even treat ageing-related neurodegenerative diseases and ageing itself. Future investigations including mammalian models and human clinical trials are needed to uncover the full potential of these olive compounds.Peer Reviewe

    Multiple functionalization of fluorescent nanoparticles for specific biolabeling and drug delivery of dopamine

    Get PDF
    The development of fluorescent biolabels for specific targeting and controlled drug release is of paramount importance in biological applications due to their potential in the generation of novel tools for simultaneous diagnosis and treatment of diseases. Dopamine is a neurotransmitter involved in several neurological diseases, such as Parkinson's disease and attention deficit hyperactivity disorder (ADHD), and the controlled delivery of its agonists already proved to have beneficial effects both in vitro and in vivo. Here, we report the synthesis and multiple functionalization of highly fluorescent CdSe/CdS quantum rods for specific biolabeling and controlled drug release. After being transferred into aqueous media, the nanocrystals were made highly biocompatible through PEG conjugation and covered by a carbohydrate shell, which allowed specific GLUT-1 recognition. Controlled attachment of dopamine through an ester bond also allowed hydrolysis by esterases, yielding a smart nanotool for specific biolabeling and controlled drug release

    Uptake and translocation of pharmaceutically active compounds by olive tree (Olea europaea L.) irrigated with treated municipal wastewater

    Get PDF
    Introduction: The use of treated municipal wastewater (TWW) represents a relevant opportunity for irrigation of agricultural crops in semi-arid regions to counter the increasing water scarcity. Pharmaceutically active compounds (PhACs) are often detected in treated wastewater, posing a risk to humans and the environment. PhACs can accumulate in soils and translocate into different plant tissues, reaching, in some cases, edible organs and entering the food chain. Methods: This study evaluated the uptake and translocation processes of 10 PhACs by olive trees irrigated with TWW, investigating their accumulation in different plant organs. The experiment was conducted in southern Italy, in 2-year-old plants irrigated with three different types of water: freshwater (FW), TWW spiked with 10 PhACs at a concentration of 200 μg L−1 (1× TWW), and at a triple dose (3× TWW), from July to October 2021. The concentration of PhACs in soil and plant organs was assessed, collecting samples of root, stem, shoot, leaf, fruit, and kernel at 0 (T0), 50 (T1), and 107 (T2) days of irrigation. PhACs extraction from soil and plant organs was carried out using the QuEChERS method, and their concentrations were determined by high-resolution mass spectrometry coupled with liquid chromatography. Results: Results of uptake factors (UF) showed a different behavior between compounds according to their physicochemical properties, highlighting PhACs accumulation and translocation in different plant organs (also edible part) in 1× TWW and 3× TWW compared to FW. Two PhACs, carbamazepine and fluconazole, showed interactions with the soil–plant system, translocating also in the aerial part of the plant, with a translocation factor (TF) greater than 1, which indicates high root-to-leaf translocation. Discussion: Findings highlight that only few PhACs among the selected compounds can be uptaken by woody plants and accumulated in edible parts at low concentration. No effects of PhACs exposure on plant growth have been detected. Despite the attention to be paid to the few compounds that translocate into edible organs, these results are promising for adapting wastewater irrigation in crops. Increasing knowledge about PhACs behavior in woody plants can be important for developing optimized wastewater irrigation and soil management strategies to reduce PhACs accumulation and translocation in plants

    Impaired bone remodeling in children with osteogenesis imperfecta treated and untreated with bisphosphonates: the role of DKK1, RANKL, and TNF-α

    Get PDF
    In this study, we investigated the bone cell activity in patients with osteogenesis imperfecta (OI) treated and untreated with neridronate. We demonstrated the key role of Dickkopf-1 (DKK1), receptor activator of nuclear factor-κB ligand (RANKL), and tumor necrosis factor alpha (TNF-α) in regulating bone cell of untreated and treated OI subjects. These cytokines could represent new pharmacological targets for OI. Introduction: Bisphosphonates are widely used in the treatment of children with osteogenesis imperfecta (OI) with the objective of reducing the risk of fractures. Although bisphosphonates increase bone mineral density in OI subjects, the effects on fracture incidence are conflicting. The aim of this study was to investigate the mechanisms underlying bone cell activity in subjects with mild untreated forms of OI and in a group of subjects with severe OI treated with cycles of intravenous neridronate. Methods: Sclerostin, DKK1, TNF-α, RANKL, osteoprotegerin (OPG), and bone turnover markers were quantified in serum of 18 OI patients (12 females, mean age 8.86 ± 3.90), 8 of which were receiving cyclic intravenous neridronate, and 21 sex- and age-matched controls. The effects on osteoblastogenesis and OPG expression of media conditioned by the serum of OI patients and anti-DKK1 neutralizing antibody were evaluated. Osteoclastogenesis was assessed in cultures from patients and controls. Results: DKK1 and RANKL levels were significantly increased both in untreated and in treated OI subjects with respect to controls. The serum from patients with high DKK1 levels inhibited both osteoblast differentiation and OPG expression in vitro. High RANKL and low OPG messenger RNA (mRNA) levels were found in lymphomonocytes from patients. High amounts of TNF-α were expressed by monocytes, and an elevated percentage of circulating CD11b-CD51/CD61+ osteoclast precursors was observed in patients. Conclusions: Our study demonstrated the key role of DKK1, RANKL, and TNF-α in regulating bone cell activity of subjects with OI untreated and treated with bisphosphonates. These cytokines could represent new pharmacological targets for OI patients

    Reproducibilidad y validez del cuestionario de frecuencia alimentaria ELSA-Brasil

    Get PDF
    Background: To investigate the association between diet and health effects in population surveys, it is necessary to have precise tools that allow estimating the habitual consumption of the population. Introduction: To investigate the association between diet and health effects in population surveys, it is necessary to have precise tools that allow estimating the habitual consumption of the population. Aim: To evaluate the reproducibility and validity of the ELSA-Brasil food frequency questionnaire (FFQ) to assess macro and micronutrients intake. Material and methods: We collected dietary information of 281 participants which completed two ELSA-Brasil food frequency questionnaires (FFQ) over a year period and three records. To assess the reproducibility of the FFQ, we compared the macro and micronutrients intake from the two FFQ while to assess the validity, we compared the intakes of FFQ with the mean of three records. The intraclass correlation test (ICC) and agreement percentages of nutrient intake were calculated after categorization by tertiles. Results: ICC coefficients for reproducibility ranged from 0.51 (polyunsaturated fat) to 0.70 (magnesium) while the ICC coefficients for validity ranged from 0.14 to 0.61 for omega 3 and magnesium, respectively. The exact concordances between methods ranged from 37% for omega 3 to 50.2% for magnesium (mean = 44.6%). An average disagreement of 13.4% was found. Conclusions: This study suggests that the ELSA-Brasil FFQ is suitable tool to assess dietary intake with a satisfactory reproducibility and relative validity.  Introducción: Para investigar la asociación entre dieta y efectos en salud en encuestas poblacionales, es necesario disponer de herramientas precisas que permitan estimar el consumo habitual de la población. Objetivo: Evaluar la reproducibilidad y validez del cuestionario de frecuencia alimentaria del ELSA-Brasil para evaluar la ingesta de macro y micronutrientes. Material y métodos: Recopilamos información dietética de 281 participantes que completaron dos cuestionarios de frecuencia alimentaria (FFQ) de ELSA-Brasil durante un período de un año y tres registros. Para evaluar la reproducibilidad del FFQ, comparamos la ingesta de macro y micronutrientes de los dos FFQ mientras que, para evaluar la validez, comparamos las ingestas de FFQ con la media de tres registros. La prueba de correlación intraclase (ICC) y los porcentajes de acuerdo de la ingesta de nutrientes se calcularon después de la categorización por tertiles. Resultados: En la evaluación de la reproducibilidad, los coeficientes ICC variaron de 0.51-0.70 para magnesio de grasas poliinsaturadas, respectivamente; en la evaluación de la validez, oscilaron entre 0,14 y 0,61 para omega 3 y magnesio, respectivamente. Las concordancias exactas entre los métodos oscilaron entre el 37% para omega 3 y el 50,2% para magnesio (media = 44,6%). Se encontró un desacuerdo promedio del 13,4%. Conclusiones: Este estudio sugiere que ELSA-Brasil FFQ es una herramienta adecuada para evaluar la ingesta dietética con una reproducibilidad satisfactoria y validez relativa

    Myrtle-Functionalized Nanofibers Modulate Vaginal Cell Population Behavior While Counteracting Microbial Proliferation

    Get PDF
    Vaginal infections affect millions of women annually worldwide. Therapeutic options are limited, moreover drug-resistance increases the need to find novel antimicrobials for health promotion. Recently phytochemicals were re-discovered for medical treatment. Myrtle (Myrtus communis L.) plant extracts showed in vitro antioxidant, antiseptic and anti-inflammatory properties thanks to their bioactive compounds. The aim of the present study was to create novel nanodevices to deliver three natural extracts from leaves, seeds and fruit of myrtle, in vaginal milieu. We explored their effect on human cells (HeLa, Human Foreskin Fibroblast-1 line, and stem cells isolated from skin), resident microflora (Lactobacillus acidophilus) and on several vaginal pathogens (Trichomonas vaginalis, Escherichia coli, Staphylococcus aureus, Candida albicans, Candida kefyr, Candida glabrata, Candida parapsilosis, Candida krusei). Polycaprolactone-Gelatin nanofibers encapsulated with leaves extract and soaked with seed extracts exhibited a different capability in regard to counteracting microbial proliferation. Moreover, these nanodevices do not affect human cells and resident microflora viability. Results reveal that some of the tested nanofibers are interesting candidates for future vaginal infection treatments
    corecore