3,573 research outputs found

    Ventilator-induced endothelial activation and inflammation in the lung and distal organs

    Get PDF
    Introduction Results from clinical studies have provided evidence for the importance of leukocyte-endothelial interactions in the pathogenesis of pulmonary diseases such as acute lung injury (ALI) and acute respiratory distress syndrome (ARDS), as well as in systemic events like sepsis and multiple organ failure (MOF). The present study was designed to investigate whether alveolar stretch due to mechanical ventilation (MV) may evoke endothelial activation and inflammation in healthy mice, not only in the lung but also in organs distal to the lung. Methods Healthy male C3H/HeN mice were anesthetized, tracheotomized and mechanically ventilated for either 1, 2 or 4 hours. To study the effects of alveolar stretch in vivo, we applied a MV strategy that causes overstretch of pulmonary tissue i.e. 20 cmH(2)O peak inspiratory pressure (PIP) and 0 cmH(2)O positive end expiratory pressure (PEEP). Non-ventilated, shamoperated animals served as a reference group (non-ventilated controls, NVC). Results Alveolar stretch imposed by MV did not only induce de novo synthesis of adhesion molecules in the lung but also in organs distal to the lung, like liver and kidney. No activation was observed in the brain. In addition, we demonstrated elevated cytokine and chemokine expression in pulmonary, hepatic and renal tissue after MV which was accompanied by enhanced recruitment of granulocytes to these organs. Conclusions Our data implicate that MV causes endothelial activation and inflammation in mice without pre-existing pulmonary injury, both in the lung and distal organs

    A challenge-based interdisciplinary undergraduate concept fostering translational medicine

    Get PDF
    Translational medicine (TM) is an interdisciplinary branch of biomedicine that bridges the gap from bench-to-bedside to improve global health. Fundamental TM skills include interdisciplinary collaboration, communication, critical thinking, and creative problem-solving (4Cs). TM is currently limited in undergraduate biomedical education programs, with little patient contact and opportunities for collaboration between different disciplines. In this study, we developed and evaluated a novel interdisciplinary challenge-based educational concept, grounded in the theoretical framework of experimental research-based education, to implement TM in undergraduate biomedicine and medicine programs. Students were introduced to an authentic clinical problem through an interdisciplinary session with patients, medical doctors, and scientists. Next, students collaborated in groups to design unique laboratory-based research proposals addressing this problem. Stakeholders subsequently rewarded the best proposal with funding to be executed in a consecutive interdisciplinary laboratory course, in which mixed teams of biomedicine and medicine students performed the research in a fully equipped wet laboratory. Written questionnaires and focus groups revealed that students developed 4C skills and acquired a 4C mindset. Working on an authentic patient case and the interdisciplinary setting positively contributed to communication, collaboration, critical thinking, and creative problem-solving skills. Furthermore, students were intrinsically motivated by (i) the relevance of their work that made them feel taken seriously and competent, (ii) the patient involvement that highlighted the societal relevance of their work, and (iii) the acquisition of a realistic view of what doing science in a biomedical research laboratory is. In conclusion, we showcase a widely applicable interdisciplinary challenge-based undergraduate concept fostering TM

    Constraints on the χ_(c1) versus χ_(c2) polarizations in proton-proton collisions at √s = 8 TeV

    Get PDF
    The polarizations of promptly produced χ_(c1) and χ_(c2) mesons are studied using data collected by the CMS experiment at the LHC, in proton-proton collisions at √s=8  TeV. The χ_c states are reconstructed via their radiative decays χ_c → J/ψγ, with the photons being measured through conversions to e⁺e⁻, which allows the two states to be well resolved. The polarizations are measured in the helicity frame, through the analysis of the χ_(c2) to χ_(c1) yield ratio as a function of the polar or azimuthal angle of the positive muon emitted in the J/ψ → μ⁺μ⁻ decay, in three bins of J/ψ transverse momentum. While no differences are seen between the two states in terms of azimuthal decay angle distributions, they are observed to have significantly different polar anisotropies. The measurement favors a scenario where at least one of the two states is strongly polarized along the helicity quantization axis, in agreement with nonrelativistic quantum chromodynamics predictions. This is the first measurement of significantly polarized quarkonia produced at high transverse momentum
    corecore