3 research outputs found

    Pharmacogenetic risk factors for altered bone mineral density and body composition in pediatric acute lymphoblastic leukemia

    Get PDF
    Background This study investigates pharmacogenetic risk factors for bone mineral (apparent) density (BM(A)D) and body composition in pediatric acute lymphoblastic leukemia Design and Methods We determined the influence of SNPs in 4 genes (vitamin-D receptor (VDR: BsmI/ApaI/TaqI and Cdx-2/GATA), collagen type I alpha 1 (SpI), estrogen receptor 1 (ESR1: PvuII/XbaI), glucocorticoid receptor (BclI)) on body composition, BM(A)D and fracture risk during dexamethasone-based pediatric acute lymphoblastic leukemia treatment. Body composition and BMD were measured repeatedly during and after treatment using dual energy X-ray absorptiometry. Results Non-carriers of VDR 5'-end (Cdx-2/GATA) haplotype 3 revealed a significant larger fat gain than carriers (D%fat: non-carriers: +1.76SDS, carriers: +0.77SDS, P<0.001). At diagnosis and during therapy, lumbar spine BMD was significantly higher in non-carriers of VDR 5'-end (Cdx-2/GATA) haplotype 3 than in carriers. The other SNPs did not influence BMD or fracture risk during/after treatment. The year after treatment completion, lean body mass increased in non-carriers of ESR1 (PvuII/XbaI) haplotype 3 and decreased in carriers (D lean body mass: non-car-riers:+0.28SDS, carriers: -0.55SDS, P<0.01). Conclusions Only VDR 5'-end (Cdx-2/GATA) haplotype 3 was identified as protective factor against excessive fat gain and as a risk factor for lower lumbar spine BMD during treatment. Carrying ESR1 (PvuII/XbaI) haplotype 3 negatively influenced recovery of lean body mass after pediatric acute lymphoblastic leukemia treatment

    Prospective study on incidence, risk factors, and long-term outcome of osteonecrosis in pediatric acute lymphoblastic leukemia.

    No full text
    Item does not contain fulltextPURPOSE: We studied cumulative incidence, risk factors, therapeutic strategies, and outcome of symptomatic osteonecrosis in pediatric patients with acute lymphoblastic leukemia (ALL). PATIENTS AND METHODS: Cumulative incidence of osteonecrosis was assessed prospectively in 694 patients treated with the dexamethasone-based Dutch Child Oncology Group-ALL9 protocol. Osteonecrosis was defined by development of symptoms (National Cancer Institute grade 2 to 4) during treatment or within 1 year after treatment discontinuation, confirmed by magnetic resonance imaging. We evaluated risk factors for osteonecrosis using logistic multivariate regression. To describe outcome, we reviewed clinical and radiologic information after antileukemic treatment 1 year or more after osteonecrosis diagnosis. RESULTS: Cumulative incidence of osteonecrosis at 3 years was 6.1%. After adjustment for treatment center, logistic multivariate regression identified age (odds ratio [OR], 1.47; P < .01) and female sex (OR, 2.23; P = .04) as independent risk factors. Median age at diagnosis of ALL in patients with osteonecrosis was 13.5 years, compared with 4.7 years in those without. In 21 (55%) of 38 patients with osteonecrosis, chemotherapy was adjusted. Seven patients (18%) underwent surgery: five joint-preserving procedures and two total-hip arthroplasties. Clinical follow-up of 35 patients was evaluated; median follow-up was 4.9 years. In 14 patients (40%), symptoms completely resolved; 14 (40%) had symptoms interfering with function but not with activities of daily living (ADLs; grade 2); seven (20%) had symptoms interfering with ADLs (grade 3). In 24 patients, radiologic follow-up was available; in six (25%), lesions improved/disappeared; in 13 (54%), lesions remained stable; five (21%) had progressive lesions. CONCLUSION: Six percent of pediatric patients with ALL developed symptomatic osteonecrosis during or shortly after treatment. Older age and female sex were risk factors. After a median follow-up of 5 years, 60% of patients had persistent symptoms

    A Validated Risk Prediction Model for Bone Fragility in Children With Acute Lymphoblastic Leukemia

    Get PDF
    Although bone fragility may already be present at diagnosis of pediatric acute lymphoblastic leukemia (ALL), routine performance of dual-energy X-ray absorptiometry (DXA) in every child is not universally feasible. The aim of this study was to develop and validate a risk prediction model for low lumbar spine bone mineral density (LS BMD Z-score ≤ -2.0) at diagnosis, as an important indicator for fracture risk and further treatment-related BMD aggravation. Children with ALL (4-18 years), treated according to the Dutch Childhood Oncology Group protocol (DCOG-ALL9; model development; n = 249) and children from the Canadian Steroid-Associated Osteoporosis in the Pediatric Population cohort (STOPP; validation; n = 99) were included in this study. Multivariable logistic regression analyses were used to develop the prediction model and to confirm the association of low LS BMD at diagnosis with symptomatic fractures during and shortly after cessation of ALL treatment. The area under the receiver operating characteristic curve (AUC) was used to assess model performance. The prediction model for low LS BMD at diagnosis using weight (β = -0.70) and age (β = -0.10) at diagnosis revealed an AUC of 0.71 (95% CI, 0.63-0.78) in DCOG-ALL9 and 0.74 (95% CI, 0.63-0.84) in STOPP, and resulted in correct identification of 71% of the patients with low LS BMD. We confirmed that low LS BMD at diagnosis is associated with LS BMD at treatment cessation (OR 5.9; 95% CI, 3.2-10.9) and with symptomatic fractures (OR 1.7; 95% CI, 1.3-2.4) that occurred between diagnosis and 12 months following treatment cessation. In meta-analysis, LS BMD at diagnosis (OR 1.6; 95% CI, 1.1-2.4) and the 6-month cumulative glucocorticoid dose (OR 1.9; 95% CI, 1.1-3.2) were associated with fractures that occurred in the first year of treatment. In summary, a prediction model for identifying pediatric ALL patients with low LS BMD at diagnosis, as an important indicator for bone fragility, was successfully developed and validated. This can facilitate identification of future bone fragility in individual pediatric ALL patients
    corecore