8 research outputs found
Recommended from our members
Bacteria Use Type IV Pili to Walk Upright and Detach from Surfaces
1. Department of Bioengineering, California Nano Systems Institute,University of California, Los Angeles, CA 90024, USA.
2. Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204, USA.
3. Department of Materials Science and Engineering, University of Illinois, Urbana-Champaign, IL 61801, USA.
4. Department of Civil Engineering and Geological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA.Bacterial biofilms are structured multicellular communities involved in a broad range of infections. Knowing how free-swimming bacteria adapt their motility mechanisms near surfaces is crucial for understanding the transition between planktonic and biofilm phenotypes. By translating microscopy movies into searchable databases of bacterial behavior, we identified fundamental type IV pili–driven mechanisms for Pseudomonas aeruginosa surface motility involved in distinct foraging strategies. Bacteria stood upright and “walked” with trajectories optimized for two-dimensional surface exploration. Vertical orientation facilitated surface
detachment and could influence biofilm morphology.Center for Nonlinear Dynamic
Recommended from our members
High resolution muscle measurements provide insights into equinus contractures in patients with cerebral palsy.
Muscle contractures that occur after upper motor neuron lesion are often surgically released or lengthened. However, surgical manipulation of muscle length changes a muscle's sarcomere length (Ls ), which can affect force production. To predict effects of surgery, both macro- (fascicle length (Lf )) and micro- (Ls ) level structural measurements are needed. Therefore, the purpose of this study was to quantify both Ls and Lf in patients with cerebral palsy (CP) as well as typically developing (TD) children. Soleus ultrasound images were obtained from children with CP and TD children. Lf was determined and, with the joint in the same position, CP biopsies were obtained and formalin fixed, and Ls was measured by laser diffraction. Since soleus Ls values were not measurable in TD children, TD Ls values were obtained using three independent methods. While average Lf did not differ between groups (CP=3.6±1.2 cm, TD=3.5±0.9 cm; p>0.6), Ls was dramatically longer in children with CP (4.07±0.45 µm vs. TD=2.17±0.24 µm; p<0.0001). While Lf values were similar between children with CP and TD children, this was due to highly stretched sarcomeres within the soleus muscle. Surgical manipulation of muscle-tendon unit length will thus alter muscle sarcomere length and change force generating capacity of the muscle
Recommended from our members
Loss of myogenic potential and fusion capacity of muscle stem cells isolated from contractured muscle in children with cerebral palsy.
Cerebral palsy (CP) is the most common cause of pediatric neurodevelopmental and physical disability in the United States. It is defined as a group of motor disorders caused by a nonprogressive perinatal insult to the brain. Although the brain lesion is nonprogressive, there is a progressive, lifelong impact on skeletal muscles, which are shorter, spastic, and may develop debilitating contractures. Satellite cells are resident muscle stem cells that are indispensable for postnatal growth and regeneration of skeletal muscles. Here we measured the myogenic potential of satellite cells isolated from contractured muscles in children with CP. When compared with typically developing (TD) children, satellite cell-derived myoblasts from CP differentiated more slowly (slope: 0.013 (SD 0.013) CP vs. 0.091 (SD 0.024) TD over 24 h, P < 0.001) and fused less (fusion index: 21.3 (SD 8.6) CP vs. 81.3 (SD 7.7) TD after 48 h, P < 0.001) after exposure to low-serum conditions that stimulated myotube formation. This impairment was associated with downregulation of several markers important for myoblast fusion and myotube formation, including DNA methylation-dependent inhibition of promyogenic integrin-β 1D (ITGB1D) protein expression levels (-50% at 42 h), and ~25% loss of integrin-mediated focal adhesion kinase phosphorylation. The cytidine analog 5-Azacytidine (5-AZA), a demethylating agent, restored ITGB1D levels and promoted myogenesis in CP cultures. Our data demonstrate that muscle contractures in CP are associated with loss of satellite cell myogenic potential that is dependent on DNA methylation patterns affecting expression of genetic programs associated with muscle stem cell differentiation and muscle fiber formation
Loss of myogenic potential and fusion capacity of muscle stem cells isolated from contractured muscle in children with cerebral palsy
Cerebral palsy (CP) is the most common cause of pediatric neurodevelopmental and physical disability in the United States. It is defined as a group of motor disorders caused by a nonprogressive perinatal insult to the brain. Although the brain lesion is nonprogressive, there is a progressive, lifelong impact on skeletal muscles, which are shorter, spastic, and may develop debilitating contractures. Satellite cells are resident muscle stem cells that are indispensable for postnatal growth and regeneration of skeletal muscles. Here we measured the myogenic potential of satellite cells isolated from contractured muscles in children with CP. When compared with typically developing (TD) children, satellite cell-derived myoblasts from CP differentiated more slowly (slope: 0.013 (SD 0.013) CP vs. 0.091 (SD 0.024) TD over 24 h, P < 0.001) and fused less (fusion index: 21.3 (SD 8.6) CP vs. 81.3 (SD 7.7) TD after 48 h, P < 0.001) after exposure to low-serum conditions that stimulated myotube formation. This impairment was associated with downregulation of several markers important for myoblast fusion and myotube formation, including DNA methylation-dependent inhibition of promyogenic integrin-β 1D (ITGB1D) protein expression levels (-50% at 42 h), and ~25% loss of integrin-mediated focal adhesion kinase phosphorylation. The cytidine analog 5-Azacytidine (5-AZA), a demethylating agent, restored ITGB1D levels and promoted myogenesis in CP cultures. Our data demonstrate that muscle contractures in CP are associated with loss of satellite cell myogenic potential that is dependent on DNA methylation patterns affecting expression of genetic programs associated with muscle stem cell differentiation and muscle fiber formation
Flagella and Pili-Mediated Near-Surface Single-Cell Motility Mechanisms in P. aeruginosa
Bacterial biofilms are structured multicellular communities that are responsible for a broad range of infections. Knowing how free-swimming bacteria adapt their motility mechanisms near a surface is crucial for understanding the transition from the planktonic to the biofilm phenotype. By translating microscopy movies into searchable databases of bacterial behavior and developing image-based search engines, we were able to identify fundamental appendage-specific mechanisms for the surface motility of Pseudomonas aeruginosa. Type IV pili mediate two surface motility mechanisms: horizontally oriented crawling, by which the bacterium moves lengthwise with high directional persistence, and vertically oriented walking, by which the bacterium moves with low directional persistence and high instantaneous velocity, allowing it to rapidly explore microenvironments. The flagellum mediates two additional motility mechanisms: near-surface swimming and surface-anchored spinning, which often precedes detachment from a surface. Flagella and pili interact cooperatively in a launch sequence whereby bacteria change orientation from horizontal to vertical and then detach. Vertical orientation facilitates detachment from surfaces and thereby influences biofilm morphology