2 research outputs found

    A Neutral Heteroleptic Molybdenum Cluster <i>trans</i>-[{Mo<sub>6</sub>I<sub>8</sub>}(py)<sub>2</sub>I<sub>4</sub>]

    No full text
    Despite that the chemistry of octahedral cluster complexes has been actively developed recently, there are still a lot of unexplored areas. For example, to date, only a few halide M6-clusters with N-heterocycles are known. Here, we obtained an apically heteroleptic octahedral iodide molybdenum cluster complex with pyridine ligands—trans-[{Mo6I8}(py)2I4] by the direct substitution of iodide apical ligands of [{Mo6I8}I6]2– in a pyridine solution. The compound co-crystalized with a monosubstituted form [{Mo6I8}(py)I5]– in the ratio of 1:4, and thus, can be described by the formula (pyH)0.2[{Mo6I8}(py)1.8I4.2]·1.8py. The composition was studied using XRPD, elemental analyses, and 1H-NMR and IR spectroscopies. According to the absorption and luminescence data, the partial substitution of apical ligands weakly affects optical properties

    Nano TiO2 and Molybdenum/Tungsten Iodide Octahedral Clusters: Synergism in UV/Visible-Light Driven Degradation of Organic Pollutants

    No full text
    Emissions of various organic pollutants in the environment becomes a more and more acute problem in the modern world as they can lead to an ecological disaster in foreseeable future. The current situation forces scientists to develop numerous methods for the treatment of polluted water. Among these methods, advanced photocatalytic oxidation is a promising approach for removing organic pollutants from wastewater. In this work, one of the most common photocatalysts&mdash;titanium dioxide&mdash;was obtained by direct aqueous hydrolysis of titanium (IV) isopropoxide and impregnated with aqueous solutions of octahedral cluster complexes [{M6I8}(DMSO)6](NO3)4 (M = Mo, W) to overcome visible light absorption issues and increase overall photocatalytic activity. XRPD analysis showed that the titania is formed as anatase-brookite mixed-phase nanoparticles and cluster impregnation does not affect the morphology of the particles. Complex deposition resulted in the expansion of the absorption up to ~500 nm and in the appearance of an additional cluster-related band gap value of 1.8 eV. Both types of materials showed high activity in the photocatalytic decomposition of RhB under UV- and sunlight irradiation with effective rate constants 4&ndash;5 times higher than those of pure TiO2. The stability of the catalysts is preserved for up to 5 cycles of photodegradation. Scavengers&rsquo; experiments revealed high impact of all of the active species in photocatalytic process indicating the formation of an S-scheme heterojunction photocatalyst
    corecore