65 research outputs found

    Covalent functionalization enables good dispersion and anisotropic orientation of multi-walled carbon nanotubes in a poly(l-lactic acid) electrospun nanofibrous matrix boosting neuronal differentiation

    Get PDF
    A biocompatible porous scaffold obtained via electrospinning a nanocomposite solution of poly(l-lactic acid) and 4-methoxyphenyl functionalized multi-walled carbon nanotubes is presented here for the first time for the enhancement of neurite outgrowth. Optimization of blend preparation and deposition parameters paves the way to the obtainment of defect-free random networks of nanofibers with homogeneous diameters in the hundreds of nanometers length scale. The tailored covalent functionalization of nanotube surfaces allows a homogeneous dispersion of the nanofillers within the polymer matrix, diminishing their natural tendency to aggregate and form bundles. This results in a remarkable effect on the crystallization temperature, as evidenced through differential scanning calorimetry. Furthermore, transmission electron microscopy shows carbon nanotubes anisotropically aligned along the fiber axes, a feature believed to enhance neurite adhesion and growth. Indeed, microscopy images show neurites extension along the direction of nanofibers, highlighting the extreme relevance of scaffold morphology in engineering complex tissue environments. Furthermore, a remarkable effect on increasing the neurite outgrowth results when using the fibrous scaffold containing dispersed carbon nanotubes in comparison with an analogous one made of only polymer, providing further evidence of the key role played by carbon nanostructures in inducing neuronal differentiation

    Interfacial Morphology Addresses Performance of Perovskite Solar Cells Based on Composite Hole Transporting Materials of Functionalized Reduced Graphene Oxide and P3HT

    Get PDF
    The development of novel hole transporting materials (HTMs) for perovskite solar cells (PSCs) that can enhance device's reproducibility is a largely pursued goal, even to the detriment of a very high efficiency, since it paves the way to an effective industrialization of this technology. In this work, we study the covalent functionalization of reduced graphene oxide (RGO) flakes with different organic functional groups with the aim of increasing the stability and homogeneity of their dispersion within a poly(3-hexylthiophene) (P3HT) HTM. The selected functional groups are indeed those recalling the two characteristic moieties present in P3HT, i.e., the thienyl and alkyl residues. After preparation and characterization of a number of functionalized RGO@P3HT blends, we test the two containing the highest percentage of dispersed RGO as HTMs in PSCs and compare their performance with that of pristine P3HT and of the standard Spiro-OMeTAD HTM. Results reveal the big influence of the morphology adopted by the single RGO flakes contained in the composite HTM in driving the final device performance and allow to distinguish one of these blends as a promising material for the fabrication of highly reproducible PSCs

    Antibody-functionalized polymer-coated gold nanoparticles targeting cancer cells: an in vitro and in vivo study

    Get PDF
    Gold nanoparticles ( 3c5 nm) coated with plasma-polymerized allylamine were produced through plasma vapor deposition and bioconjugated with a monoclonal antibody targeting the epidermal growth factor receptor. The resulting nanoconjugates displayed an antibody loading of about 1.7 nmol mg -1 and efficiently target epidermal growth factor receptor overexpressing cell lines, as ascertained by ELISA and Western blot assays. The in vitro targeting properties were also confirmed in vivo, where a similar biodistribution profile of what was experienced for the unconjugated antibody was observed. Thanks to the possibility of doping the gold nanoparticles with radionuclides during plasma vapor deposition, the proposed functionalization strategy represents a very suitable platform for the in vivo cancer targeting with nanosized multifunctional particles. This journal is \ua9 2012 The Royal Society of Chemistry

    Anisotropic Confinement, Electronic Coupling and Strain Induced Effects Detected by Valence-Band Anisotropy in Self-Assembled Quantum Dots

    Get PDF
    A method to determine the effects of the geometry and lateral ordering on the electronic properties of an array of one-dimensional self-assembled quantum dots is discussed. A model that takes into account the valence-band anisotropic effective masses and strain effects must be used to describe the behavior of the photoluminescence emission, proposed as a clean tool for the characterization of dot anisotropy and/or inter-dot coupling. Under special growth conditions, such as substrate temperature and Arsenic background, 1D chains of In0.4Ga0.6 As quantum dots were grown by molecular beam epitaxy. Grazing-incidence X-ray diffraction measurements directly evidence the strong strain anisotropy due to the formation of quantum dot chains, probed by polarization-resolved low-temperature photoluminescence. The results are in fair good agreement with the proposed model

    Carbon nanotubes allow capture of krypton, barium and lead for multichannel biological X-ray fluorescence imaging

    Get PDF
    The desire to study biology in situ has been aided by many imaging techniques. Among these, X-ray fluorescence (XRF) mapping permits observation of elemental distributions in a multichannel manner. However, XRF imaging is underused, in part, because of the difficulty in interpreting maps without an underlying cellular ‘blueprint’; this could be supplied using contrast agents. Carbon nanotubes (CNTs) can be filled with a wide range of inorganic materials, and thus can be used as ‘contrast agents’ if biologically absent elements are encapsulated. Here we show that sealed single-walled CNTs filled with lead, barium and even krypton can be produced, and externally decorated with peptides to provide affinity for sub-cellular targets. The agents are able to highlight specific organelles in multiplexed XRF mapping, and are, in principle, a general and versatile tool for this, and other modes of biological imaging

    Intradural cervical disc herniation and Brown—Séquard's syndrome

    No full text
    corecore