7,299 research outputs found

    Old open clusters: UBGVRI photometry of NGC 2506

    Get PDF
    UBGVRI photometry for the open cluster NGC 2506 is presented. From comparison of the observed colour-magnitude diagrams with simulations based on stellar evolutionary models we derive in a self consistent way reddening, distance, and age of the cluster: E(B-V)=0-0.07, (m-M)o = 12.6, age = 1.5-2.2 Gyr. The cluster shows a well definite secondary sequence, suggesting that binary systems constitute about 20 % of the cluster members visible in the colour-magnitude diagram.Comment: 11 pages, 7 figures, MNRAS latex style, accepte

    Critical properties of Ising model on Sierpinski fractals. A finite size scaling analysis approach

    Full text link
    The present paper focuses on the order-disorder transition of an Ising model on a self-similar lattice. We present a detailed numerical study, based on the Monte Carlo method in conjunction with the finite size scaling method, of the critical properties of the Ising model on some two dimensional deterministic fractal lattices with different Hausdorff dimensions. Those with finite ramification order do not display ordered phases at any finite temperature, whereas the lattices with infinite connectivity show genuine critical behavior. In particular we considered two Sierpinski carpets constructed using different generators and characterized by Hausdorff dimensions d_H=log 8/log 3 = 1.8927.. and d_H=log 12/log 4 = 1.7924.., respectively. The data show in a clear way the existence of an order-disorder transition at finite temperature in both Sierpinski carpets. By performing several Monte Carlo simulations at different temperatures and on lattices of increasing size in conjunction with a finite size scaling analysis, we were able to determine numerically the critical exponents in each case and to provide an estimate of their errors. Finally we considered the hyperscaling relation and found indications that it holds, if one assumes that the relevant dimension in this case is the Hausdorff dimension of the lattice.Comment: 21 pages, 7 figures; a new section has been added with results for a second fractal; there are other minor change

    Theoretical fits of the \delta Cephei light, radius and radial velocity curves

    Full text link
    We present a theoretical investigation of the light, radius and radial velocity variations of the prototype δ\delta Cephei. We find that the best fit model accounts for luminosity and velocity amplitudes with an accuracy better than 0.8σ0.8\sigma, and for the radius amplitude with an accuracy of 1.7σ1.7\sigma. The chemical composition of this model suggests a decrease in both helium (0.26 vs 0.28) and metal (0.01 vs 0.02) content in the solar neighborhood. Moreover, distance determinations based on the fit of light curves agree at the 0.8σ0.8\sigma level with the trigonometric parallax measured by the Hubble Space Telescope (HST). On the other hand, distance determinations based on angular diameter variations, that are independent of interstellar extinction and of the pp-factor value, indicate an increase of the order of 5% in the HST parallax.Comment: accepted for publication on ApJ Letter

    Interface pinning and slow ordering kinetics on infinitely ramified fractal structures

    Full text link
    We investigate the time dependent Ginzburg-Landau (TDGL) equation for a non conserved order parameter on an infinitely ramified (deterministic) fractal lattice employing two alternative methods: the auxiliary field approach and a numerical method of integration of the equations of evolution. In the first case the domain size evolves with time as L(t)∼t1/dwL(t)\sim t^{1/d_w}, where dwd_w is the anomalous random walk exponent associated with the fractal and differs from the normal value 2, which characterizes all Euclidean lattices. Such a power law growth is identical to the one observed in the study of the spherical model on the same lattice, but fails to describe the asymptotic behavior of the numerical solutions of the TDGL equation for a scalar order parameter. In fact, the simulations performed on a two dimensional Sierpinski Carpet indicate that, after an initial stage dominated by a curvature reduction mechanism \`a la Allen-Cahn, the system enters in a regime where the domain walls between competing phases are pinned by lattice defects. The lack of translational invariance determines a rough free energy landscape, the existence of many metastable minima and the suppression of the marginally stable modes, which in translationally invariant systems lead to power law growth and self similar patterns. On fractal structures as the temperature vanishes the evolution is frozen, since only thermally activated processes can sustain the growth of pinned domains.Comment: 16 pages+14 figure

    Detailed abundances in stars belonging to ultra-faint dwarf spheroidal galaxies

    Full text link
    We report preliminary results concerning the detailed chemical composition of metal poor stars belonging to close ultra-faint dwarf galaxies (hereafter UfDSphs). The abundances have been determined thanks to spectra obtained with X-Shooter, a high efficiency spectrograph installed on one of the ESO VLT units. The sample of ultra-faint dwarf spheroidal stars have abundance ratios slightly lower to what is measured in field halo star of the same metallicity.We did not find extreme abundances in our Hercules stars as the one found by Koch for his 2 Hercules stars. The synthesis of the neutron capture elements Ba and Sr seems to originate from the same nucleosynthetic process in operation during the early stages of the galactic evolution.Comment: 3 pages, 1 figure; OMEG11 conference (Tokyo, Nov 2011
    • …
    corecore