35 research outputs found

    Advanced paternal age and vulnerability to psychotic-like experiences in the offspring

    Get PDF
    AbstractObjectiveTo investigate whether advanced paternal age is associated with increased psychotic-like experiences (PLEs) and increased sensitivity to Cannabis in the offspring.MethodsA cross-sectional population-based study in 1684 participants aged 18 to 25.ResultsWe found no association of paternal age with PLEs. Only the positive dimension subscale was associated to paternal age, but that could be largely contributed to outliers. Also no increased sensitivity to Cannabis smoking was apparent.ConclusionIn the general population, we did not find robust support for an association between paternal age and vulnerability to PLEs in 18–25year old offspring

    Facing infant cuteness: How nurturing care motivation and oxytocin system gene methylation are associated with responses to baby schema features

    Get PDF
    Baby schema features are a specific set of physical features—including chubby cheeks, large, low-set eyes, and a large, round head—that have evolutionary adaptive value in their ability to trigger nurturant care. In this study among nulliparous women (N = 81; M age = 23.60, SD = 0.44), we examined how sensitivity to these baby schema features differs based on individual variations in nurturant care motivation and oxytocin system gene methylation. We integrated subjective ratings with measures of facial expressions and electroencephalography (EEG) in response to infant faces that were manipulated to contain more or less pronounced baby schema features. Linear mixed effects analyses demonstrated that infants with more pronounced baby schema features were rated as cuter and participants indicated greater motivation to take care of them. Furthermore, infants with more pronounced baby schema features elicited stronger smiling responses and enhanced P2 and LPP amplitudes compared to infants with less pronounced baby schema features. Importantly, individual differences significantly predicted baby schema effects. Specifically, women with low OXTR methylation and high nurturance motivation showed enhanced differentiation in automatic neurophysiological responses to infants with high and low levels of baby schema features. These findings highlight the importance of considering individual differences in continued research to further understand the complexities of sensitivity to child cues, including facial features, which will improve our understanding of the intricate neurobiological system that forms the basis of caregiving behavior

    The Mood and Resilience in Offspring (MARIO) project:a longitudinal cohort study among offspring of parents with and without a mood disorder

    Get PDF
    Background:One of the most robust risk factors for developing a mood disorder is having a parent with a mood disorder. Unfortunately, mechanisms explaining the transmission of mood disorders from one generation to the next remain largely elusive. Since timely intervention is associated with a better outcome and prognosis, early detection of intergenerational transmission of mood disorders is of paramount importance. Here, we describe the design of the Mood and Resilience in Offspring (MARIO) cohort study in which we investigate: 1. differences in clinical, biological and environmental (e.g., psychosocial factors, substance use or stressful life events) risk and resilience factors in children of parents with and without mood disorders, and 2. mechanisms of intergenerational transmission of mood disorders via clinical, biological and environmental risk and resilience factors. Methods: MARIO is an observational, longitudinal cohort study that aims to include 450 offspring of parents with a mood disorder (uni- or bipolar mood disorders) and 100-150 offspring of parents without a mood disorder aged 10-25 years. Power analyses indicate that this sample size is sufficient to detect small to medium sized effects. Offspring are recruited via existing Dutch studies involving patients with a mood disorder and healthy controls, for which detailed clinical, environmental and biological data of the index-parent (i.e., the initially identified parent with or without a mood disorder) is available. Over a period of three years, four assessments will take place, in which extensive clinical, biological and environmental data and data on risk and resilience are collected through e.g., blood sampling, face-to-face interviews, online questionnaires, actigraphy and Experience Sampling Method assessment. For co-parents, information on demographics, mental disorder status and a DNA-sample are collected.Discussion: The MARIO cohort study is a large longitudinal cohort study among offspring of parents with and without mood disorders. A unique aspect is the collection of granular data on clinical, biological and environmental risk and resilience factors in offspring, in addition to available parental data on many similar factors. We aim to investigate the mechanisms underlying intergenerational transmission of mood disorders, which will ultimately lead to better outcomes for offspring at high familial risk.</p

    The Mood and Resilience in Offspring (MARIO) project:a longitudinal cohort study among offspring of parents with and without a mood disorder

    Get PDF
    Background:One of the most robust risk factors for developing a mood disorder is having a parent with a mood disorder. Unfortunately, mechanisms explaining the transmission of mood disorders from one generation to the next remain largely elusive. Since timely intervention is associated with a better outcome and prognosis, early detection of intergenerational transmission of mood disorders is of paramount importance. Here, we describe the design of the Mood and Resilience in Offspring (MARIO) cohort study in which we investigate: 1. differences in clinical, biological and environmental (e.g., psychosocial factors, substance use or stressful life events) risk and resilience factors in children of parents with and without mood disorders, and 2. mechanisms of intergenerational transmission of mood disorders via clinical, biological and environmental risk and resilience factors. Methods: MARIO is an observational, longitudinal cohort study that aims to include 450 offspring of parents with a mood disorder (uni- or bipolar mood disorders) and 100-150 offspring of parents without a mood disorder aged 10-25 years. Power analyses indicate that this sample size is sufficient to detect small to medium sized effects. Offspring are recruited via existing Dutch studies involving patients with a mood disorder and healthy controls, for which detailed clinical, environmental and biological data of the index-parent (i.e., the initially identified parent with or without a mood disorder) is available. Over a period of three years, four assessments will take place, in which extensive clinical, biological and environmental data and data on risk and resilience are collected through e.g., blood sampling, face-to-face interviews, online questionnaires, actigraphy and Experience Sampling Method assessment. For co-parents, information on demographics, mental disorder status and a DNA-sample are collected.Discussion: The MARIO cohort study is a large longitudinal cohort study among offspring of parents with and without mood disorders. A unique aspect is the collection of granular data on clinical, biological and environmental risk and resilience factors in offspring, in addition to available parental data on many similar factors. We aim to investigate the mechanisms underlying intergenerational transmission of mood disorders, which will ultimately lead to better outcomes for offspring at high familial risk.</p

    Author Correction:Functional connectome differences in individuals with hallucinations across the psychosis continuum (Scientific Reports, (2021), 11, 1, (1108), 10.1038/s41598-020-80657-8)

    Get PDF
    The Supplementary Information published with this Article contained an error, where an old version of Figure S5 was used. This error has now been corrected in the Supplementary Information file that accompanies the original Article. The corrected Supplementary Information file is also linked to this correction notices.</p

    Author Correction:Functional connectome differences in individuals with hallucinations across the psychosis continuum (Scientific Reports, (2021), 11, 1, (1108), 10.1038/s41598-020-80657-8)

    Get PDF
    The Supplementary Information published with this Article contained an error, where an old version of Figure S5 was used. This error has now been corrected in the Supplementary Information file that accompanies the original Article. The corrected Supplementary Information file is also linked to this correction notices

    Contribution of Age, Brain Region, Mood Disorder Pathology, and Interindividual Factors on the Methylome of Human Microglia

    Get PDF
    Background: Transcriptome studies have revealed age-, disease-, and region-associated microglial phenotypes reflecting changes in microglial function during development, aging, central nervous system homeostasis, and pathology. The molecular mechanisms that contribute to these transcriptomic changes are largely unknown. The aim of this study was to characterize the DNA methylation landscape of human microglia and the factors that contribute to variations in the microglia methylome. We hypothesized that both age and brain region would have a large impact on DNA methylation in microglia. Methods: Microglia from postmortem brain tissue of four different brain regions of 22 donors, encompassing 1 patient with schizophrenia, 13 patients with mood disorder pathology, and 8 control subjects, were isolated and assayed using a genome-wide methylation array. Results: We found that human microglial cells have a methylation profile distinct from bulk brain tissue and neurons, and age explained a considerable part of the variation. Additionally, we showed that interindividual factors had a much larger effect on the methylation landscape of microglia than brain region, which was also seen at the transcriptome level. In our exploratory analysis, we found various differentially methylated regions that were related to disease status (mood disorder vs. control). This included differentially methylated regions that are linked to gene expression in microglia, as well as to myeloid cell function or neuropsychiatric disorders. Conclusions: Although based on relatively small samples, these findings suggest that the methylation profile of microglia is responsive to interindividual variations and thereby plays an important role in the heterogeneity of microglia observed at the transcriptome level

    Changes in perfusion, and structure of hippocampal subfields related to cognitive impairment after ECT: A pilot study using ultra high field MRI

    Get PDF
    Background: Electroconvulsive therapy (ECT) in patients with major depression is associated with volume changes and markers of neuroplasticity in the hippocampus, in particular in the dentate gyrus. It is unclear if these changes are associated with cognitive side effects. Objectives: We investigated whether changes in cognitive functioning after ECT were associated with hippocampal structural changes. It was hypothesized that 1) volume increase of hippocampal subfields and 2) changes in perfusion and diffusion of the hippocampus correlated with cognitive decline. Methods: Using ultra high field (7 T) MRI, intravoxel incoherent motion and volumetric data were acquired and neurocognitive functioning was assessed before and after ECT in 23 patients with major depression. Repeated measures correlation analysis was used to examine the relation between cognitive functioning and structural characteristics of the hippocampus. Results: Left hippocampal volume, left and right dentate gyrus and right CA1 volume increase correlated with decreases in verbal memory functioning. In addition, a decrease of mean diffusivity in the left hippocampus correlated with a decrease in letter fluency. Limitations: Due to methodological restrictions direct study of neuroplasticity is not possible. MRI is used as an indirect measure. Conclusion: As both volume increase in the hippocampus and MD decrease can be interpreted as indirect markers for neuroplasticity that co-occur with a decrease in cognitive functioning, our results may indicate that neuroplastic processes are affecting cognitive processes after ECT

    The Mood and Resilience in Offspring (MARIO) project: a longitudinal cohort study among offspring of parents with and without a mood disorder

    Get PDF
    Background: One of the most robust risk factors for developing a mood disorder is having a parent with a mood disorder. Unfortunately, mechanisms explaining the transmission of mood disorders from one generation to the next remain largely elusive. Since timely intervention is associated with a better outcome and prognosis, early detection of intergenerational transmission of mood disorders is of paramount importance. Here, we describe the design of the Mood and Resilience in Offspring (MARIO) cohort study in which we investigate: 1. differences in clinical, biological and environmental (e.g., psychosocial factors, substance use or stressful life events) risk and resilience factors in children of parents with and without mood disorders, and 2. mechanisms of intergenerational transmission of mood disorders via clinical, biological and environmental risk and resilience factors. Methods: MARIO is an observational, longitudinal cohort study that aims to include 450 offspring of parents with a mood disorder (uni- or bipolar mood disorders) and 100-150 offspring of parents without a mood disorder aged 10-25 years. Power analyses indicate that this sample size is sufficient to detect small to medium sized effects. Offspring are recruited via existing Dutch studies involving patients with a mood disorder and healthy controls, for which detailed clinical, environmental and biological data of the index-parent (i.e., the initially identified parent with or without a mood disorder) is available. Over a period of three years, four assessments will take place, in which extensive clinical, biological and environmental data and data on risk and resilience are collected through e.g., blood sampling, face-to-face interviews, online questionnaires, actigraphy and Experience Sampling Method assessment. For co-parents, information on demographics, mental disorder status and a DNA-sample are collected. Discussion: The MARIO cohort study is a large longitudinal cohort study among offspring of parents with and without mood disorders. A unique aspect is the collection of granular data on clinical, biological and environmental risk and resilience factors in offspring, in addition to available parental data on many similar factors. We aim to investigate the mechanisms underlying intergenerational transmission of mood disorders, which will ultimately lead to better outcomes for offspring at high familial risk
    corecore