1,987 research outputs found

    Use of Sentinel-2 Derived Vegetation Indices for Estimating fPAR in Olive Groves

    Get PDF
    Olive tree cultivation is currently a dominant agriculture activity in the Mediterranean basin, where the increasing impact of climate change coupled with the inefficient management of olive groves is negatively affecting olive oil production and quality in some marginal areas. In this context, satellite imagery may help to monitor crop growth under different environmental conditions, thus providing useful information for optimizing olive grove management and final production. However, the spatial resolution of freely-available satellite products is not yet adequate to estimate plant biophysical parameters in complex agroecosystems such as olive groves, where both olive trees and grass cover contribute to the vegetation indices (VIs) signal at pixel scale. The aim of this study is therefore to test a disentangling procedure to partition the VIs signal among the different components of the agroecosystem to use this information for the monitoring of olive growth processes during the season. Specifically, five VIs (GEMI, MCARI2, NDVI, OSAVI, MCARI2/OSAVI) as recorded by Sentinel-2 at a spatial resolution of 10 m over five olive groves in the Montalbano area (Tuscany, Central Italy), were tested as a proxy for olive tree intercepted radiation. The olive tree volume per pixel was initially used to linearly rescale the VIs signal into the relevant value for the grass cover and olive trees. The models, describing the relationship between rescaled VIs and observed fraction of Photosynthetically Active Radiation (fPAR), were fitted and then validated against independent datasets. While in the calibration phase, a greater robustness at predicting fPAR was obtained using NDVI (r = 0.96 and RRMSE = 9.86), the validation results demonstrating that GEMI and MCARI2/OSAVI provided the highest performances (GEMI: r = 0.89 and RRMSE = 21.71; MCARI2/OSAVI: r = 0.87 and RRMSE = 25.50), in contrast to MCARI2 that provided the lowest (r = 0.67 and RRMSE = 36.78). These results may be related to the VIs’ intrinsic features (e.g., lower sensitivity to atmosphere and background effects), which make some of these indices, compared to others, less sensitive to saturation effects by improving fPAR estimation (e.g., GEMI vs. NDVI). On this basis, this study evidenced the need to improve the current methodologies to reduce inter-row effects and select appropriate VIs for fPAR estimation, especially in complex agroecosystems where inter-row grass growth may affect remote sensed-derived VIs signal at an inadequate pixel resolution

    WSES classification and guidelines for liver trauma

    Get PDF
    The severity of liver injuries has been universally classified according to the American Association for the Surgery of Trauma (AAST) grading scale. In determining the optimal treatment strategy, however, the haemodynamic status and associated injuries should be considered. Thus the management of liver trauma is ultimately based on the anatomy of the injury and the physiology of the patient. This paper presents the World Society of Emergency Surgery (WSES) classification of liver trauma and the management Guidelines

    Benefits of spine stabilization with biodegradable scaffolds in spinal cord injured rats

    Get PDF
    Spine stabilization upon spinal cord injury (SCI) is a standard procedure in clinical practice, but rarely employed in experimental models. Moreover, the application of biodegradable biomaterials for this would come as an advantage as it would eliminate the presence of a nondegradable prosthesis within the vertebral bone. Therefore, in the present work, we propose the use of a new biodegradable device specifically developed for spine stabilization in a rat model of SCI. A 3D scaffold based on a blend of starch with polycaprolactone was implanted, replacing delaminated vertebra, in male Wistar rats with a T8-T9 spinal hemisection. The impact of spinal stabilization on the locomotor behavior was then evaluated for a period of 12 weeks. Locomotor evaluation—assessed by Basso, Beatie, and Bresnahan test; rotarod; and open field analysis—revealed that injured rats subjected to spine stabilization significantly improved their motor performance, including higher coordination and rearing activity when compared with SCI rats without stabilization. Histological analysis further revealed that the presence of the scaffolds not only stabilized the area, but also simultaneously prevented the infiltration of the injury site by connective tissue. Overall, these results reveal that SCI stabilization using a biodegradable scaffold at the vertebral bone level leads to an improvement of the motor deficits and is a relevant element for the successful treatment of SCI.The authors would like to acknowledge the Portuguese Foundation for Science and Technology (Doctoral fellowship to Nuno Silva, SFRH/BD/40684/2007; Ciência 2007 Program to António Salgado; Grant N PTDC/SAU-BMA/114059/2009) and the Foundation Calouste de Gulbenkian to funds attributed to A.J. Salgado under the scope of the The Gulbenkian Programme to Support Cutting Edge Research in the Life Sciences

    A Review of the Potential Climate Change Impacts and Adaptation Options for European Viticulture

    Get PDF
    Viticulture and winemaking are important socioeconomic sectors in many European regions. Climate plays a vital role in the terroir of a given wine region, as it strongly controls canopy microclimate, vine growth, vine physiology, yield, and berry composition, which together determine wine attributes and typicity. New challenges are, however, predicted to arise from climate change, as grapevine cultivation is deeply dependent on weather and climate conditions. Changes in viticultural suitability over the last decades, for viticulture in general or the use of specific varieties, have already been reported for many wine regions. Despite spatially heterogeneous impacts, climate change is anticipated to exacerbate these recent trends on suitability for wine production. These shifts may reshape the geographical distribution of wine regions, while wine typicity may also be threatened in most cases. Changing climates will thereby urge for the implementation of timely, suitable, and cost-effective adaptation strategies, which should also be thoroughly planned and tuned to local conditions for an effective risk reduction. Although the potential of the different adaptation options is not yet fully investigated, deserving further research activities, their adoption will be of utmost relevance to maintain the socioeconomic and environmental sustainability of the highly valued viticulture and winemaking sector in Europe.This study was funded by Clim4Vitis project—“Climate change impact mitigation for European viticulture: knowledge transfer for an integrated approach”, funded by the European Union’s Horizon 2020 Research and Innovation Programme, under grant agreement no. 810176; it was also supported by FCT—Portuguese Foundation for Science and Technology, under the project UIDB/04033/2020

    Phenological Model Intercomparison for Estimating Grapevine Budbreak Date (Vitis vinifera L.) in Europe

    Get PDF
    Budbreak date in grapevine is strictly dependent on temperature, and the correct simulation of its occurrence is of great interest since it may have major consequences on the final yield and quality. In this study, we evaluated the reliability for budbreak simulation of two modeling approaches, the chilling-forcing (CF), which describes the entire dormancy period (endo- and eco-dormancy) and the forcing approach (F), which only describes the eco-dormancy. For this, we selected six phenological models that apply CF and F in different ways, which were tested on budbreak simulation of eight grapevine varieties cultivated at different latitudes in Europe. Although none of the compared models showed a clear supremacy over the others, models based on CF showed a generally higher estimation accuracy than F where fixed starting dates were adopted. In the latter models, the accurate simulation of budbreak was dependent on the selection of the starting date for forcing accumulation that changes according to the latitude, whereas CF models were independent. Indeed, distinct thermal requirements were found for the grapevine varieties cultivated in Northern and Southern Europe. This implies the need to improve modeling of the dormancy period to avoid under- or over-estimations of budbreak date under different environmental conditions.This research was funded by the European Union’s Horizon 2020 Research and Innovation Programme, under the Clim4Vitis project: “Climate change impact mitigation for European viticulture: knowledge transfer for an integrated approach”, grant agreement no. 810176. It was also supported by FCT-Portuguese Foundation for Science and Technology, under the project UIDB/04033/2020 and the French National Research Agency (ANR) in the frame of the Investments for the Future Program, within the cluster of excellence COTE (ANR-10-LABX-45)

    Neovascularized implantable cell homing encapsulation platform with tunable local immunosuppressant delivery for allogeneic cell transplantation.

    Get PDF
    Cell encapsulation is an attractive transplantation strategy to treat endocrine disorders. Transplanted cells offer a dynamic and stimulus-responsive system that secretes therapeutics based on patient need. Despite significant advancements, a challenge in allogeneic cell encapsulation is maintaining sufficient oxygen and nutrient exchange, while providing protection from the host immune system. To this end, we developed a subcutaneously implantable dual-reservoir encapsulation system integrating in situ prevascularization and local immunosuppressant delivery, termed NICHE. NICHE structure is 3D-printed in biocompatible polyamide 2200 and comprises of independent cell and drug reservoirs separated by a nanoporous membrane for sustained local release of immunosuppressant. Here we present the development and characterization of NICHE, as well as efficacy validation for allogeneic cell transplantation in an immunocompetent rat model. We established biocompatibility and mechanical stability of NICHE. Further, NICHE vascularization was achieved with the aid of mesenchymal stem cells. Our study demonstrated sustained local elution of immunosuppressant (CTLA4Ig) into the cell reservoir protected transcutaneously-transplanted allogeneic Leydig cells from host immune destruction during a 31-day study, and reduced systemic drug exposure by 12-fold. In summary, NICHE is the first encapsulation platform achieving both in situ vascularization and immunosuppressant delivery, presenting a viable strategy for allogeneic cell transplantation

    Platinum–Vanadium Oxide Nanotube Hybrids

    Get PDF
    The present contribution reports on the features of platinum-based systems supported on vanadium oxide nanotubes. The synthesis of nanotubes was carried out using a commercial vanadium pentoxide via hydrothermal route. The nanostructured hybrid materials were prepared by wet impregnation using two different platinum precursors. The formation of platinum nanoparticles was evaluated by applying distinct reduction procedures. All nanostructured samples were essentially analysed by X-ray diffraction and transmission electron microscopy. After reduction, transmission electron microscopy also made it possible to estimate particle size distribution and mean diameter calculations. It could be seen that all reduction procedures did not affect the nanostructure of the supports and that the formation of metallic nanoparticles is quite efficient with an indistinct distribution along the nanotubes. Nevertheless, the reduction procedure determined the diameter, dispersion and shape of the metallic particles. It could be concluded that the use of H2PtCl6 is more suitable and that the use of hydrogen as reducing agent leads to a nanomaterial with unagglomerated round-shaped metallic particles with mean size of 6–7 nm

    Ascending Aortic Aneurysm in Angiotensin II–Infused Mice: Formation, Progression, and the Role of Focal Dissections

    Get PDF
    Objective To understand the anatomy and physiology of ascending aortic aneurysms in angiotensin II-infused ApoE(-/-) mice. Approach and Results We combined an extensive in vivo imaging protocol (high-frequency ultrasound and contrast-enhanced microcomputed tomography at baseline and after 3, 10, 18, and 28 days of angiotensin II infusion) with synchrotron-based ultrahigh resolution ex vivo imaging (phase contrast X-ray tomographic microscopy) in n=47 angiotensin II-infused mice and 6 controls. Aortic regurgitation increased significantly over time, as did the luminal volume of the ascending aorta. In the samples that were scanned ex vivo, we observed one or several focal dissections, with the largest located in the outer convex aspect of the ascending aorta. The volume of the dissections moderately correlated to the volume of the aneurysm as measured in vivo (r(2)=0.46). After 3 days of angiotensin II infusion, we found an interlaminar hematoma in 7/12 animals, which could be linked to an intimal tear. There was also a significant increase in single laminar ruptures, which may have facilitated a progressive enlargement of the focal dissections over time. At later time points, the hematoma was resorbed and the medial and adventitial thickness increased. Fatal transmural dissection occurred in 8/47 mice at an early stage of the disease, before adventita remodeling. Conclusions We visualized and quantified the dissections that lead to ascending aortic aneurysms in angiotensin II-infused mice and provided unique insight into the temporal evolution of these lesions
    corecore