40 research outputs found

    Mitochondria-Targeted Antioxidants SkQ1 and MitoTEMPO Failed to Exert a Long-Term Beneficial Effect in Murine Polymicrobial Sepsis

    Get PDF
    Mitochondrial-derived reactive oxygen species have been deemed an important contributor in sepsis pathogenesis. We investigated whether two mitochondria-targeted antioxidants (mtAOX; SkQ1 and MitoTEMPO) improved long-term outcome, lessened inflammation, and improved organ homeostasis in polymicrobial murine sepsis. 3-month-old female CD-1 mice (n = 90) underwent cecal ligation and puncture (CLP) and received SkQ1 (5 nmol/kg), MitoTEMPO (50 nmol/kg), or vehicle 5 times post-CLP. Separately, 52 SkQ1-treated CLP mice were sacrificed at 24 h and 48 h for additional endpoints. Neither MitoTEMPO nor SkQ1 exerted any protracted survival benefit. Conversely, SkQ1 exacerbated 28-day mortality by 29%. CLP induced release of 10 circulating cytokines, increased urea, ALT, and LDH, and decreased glucose but irrespectively of treatment. Similar occurred for CLP-induced lymphopenia/neutrophilia and the NO blood release. At 48 h post-CLP, dying mice had approximately 100-fold more CFUs in the spleen than survivors, but this was not SkQ1 related. At 48 h, macrophage and granulocyte counts increased in the peritoneal lavage but irrespectively of SkQ1. Similarly, hepatic mitophagy was not altered by SkQ1 at 24 h. The absence of survival benefit of mtAOX may be due to the extended treatment and/or a relatively moderate-risk-of-death CLP cohort. Long-term effect of mtAOX in abdominal sepsis appears different to sepsis/inflammation models arising from other body compartments

    Mitochondria-Targeted Antioxidants SkQ1 and MitoTEMPO Failed to Exert a Long-Term Beneficial Effect in Murine Polymicrobial Sepsis

    Get PDF
    Mitochondrial-derived reactive oxygen species have been deemed an important contributor in sepsis pathogenesis. We investigated whether two mitochondria-targeted antioxidants (mtAOX; SkQ1 and MitoTEMPO) improved long-term outcome, lessened inflammation, and improved organ homeostasis in polymicrobial murine sepsis. 3-month-old female CD-1 mice (n=90) underwent cecal ligation and puncture (CLP) and received SkQ1 (5 nmol/kg), MitoTEMPO (50 nmol/kg), or vehicle 5 times post-CLP. Separately, 52 SkQ1-treated CLP mice were sacrificed at 24 h and 48 h for additional endpoints. Neither MitoTEMPO nor SkQ1 exerted any protracted survival benefit. Conversely, SkQ1 exacerbated 28-day mortality by 29%. CLP induced release of 10 circulating cytokines, increased urea, ALT, and LDH, and decreased glucose but irrespectively of treatment. Similar occurred for CLP-induced lymphopenia/neutrophilia and the NO blood release. At 48 h post-CLP, dying mice had approximately 100-fold more CFUs in the spleen than survivors, but this was not SkQ1 related. At 48 h, macrophage and granulocyte counts increased in the peritoneal lavage but irrespectively of SkQ1. Similarly, hepatic mitophagy was not altered by SkQ1 at 24 h. The absence of survival benefit of mtAOX may be due to the extended treatment and/or a relatively moderate-risk-of-death CLP cohort. Long-term effect of mtAOX in abdominal sepsis appears different to sepsis/inflammation models arising from other body compartments

    Current gaps in sepsis immunology: new opportunities for translational research

    Get PDF
    Increasing evidence supports a central role of the immune system in sepsis, but the current view of how sepsis affects immunity, and vice versa, is still rudimentary. The European Group on Immunology of Sepsis has identified major gaps that should be addressed with high priority, such as understanding how immunological alterations predispose to sepsis, key aspects of the immunopathological events during sepsis, and the long-term consequences of sepsis on patient's immunity. We discuss major unmet topics in those three categories, including the role of key immune cells, the cause of lymphopenia, organ-specific immunology, the dynamics of sepsis-associated immunological alterations, the role of the microbiome, the standardisation of immunological tests, the development of better animal models, and the opportunities offered by immunotherapy. Addressing these gaps should help us to better understand sepsis physiopathology, offering translational opportunities to improve its prevention, diagnosis, and care

    Minimum Quality Threshold in Pre-Clinical Sepsis Studies (MQTiPSS): an international expert consensus initiative for improvement of animal modeling in sepsis

    Get PDF
    Purpose: Pre-clinical animal studies precede the majority of clinical trials. While the clinical sepsis definitions and recommended treatments are regularly updated, a systematic review of pre-clinical models of sepsis has not been done and clear modeling guidelines are lacking. To address this deficit, a Wiggers-Bernard Conference on pre-clinical sepsis modeling was held in Vienna in May, 2017. The conference goal was to identify limitations of pre-clinical sepsis models and to propose a set of guidelines, defined as the “Minimum Quality Threshold in Pre-Clinical Sepsis Studies” (MQTiPSS), to enhance translational value of these models. Methods: 31 experts from 13 countries participated and were divided into 6 thematic Working Groups (WG): (1) Study Design, (2) Humane modeling, (3) Infection types, (4) Organ failure/dysfunction, (5) Fluid resuscitation and (6) Antimicrobial therapy endpoints. As basis for the MQTiPSS discussions, the participants conducted a literature review of the 260 most highly cited scientific articles on sepsis models (2002–2013). Results: Overall, the participants reached consensus on 29 points; 20 at “recommendation” (R) and 9 at “consideration” (C) strength. This Executive Summary provides a synopsis of the MQTiPSS consensus (Tables 1, 2 and 3). Conclusions: We believe that these recommendations and considerations will serve to bring a level of standardization to pre-clinical models of sepsis and ultimately improve translation of pre-clinical findings. These guideline points are proposed as “best practices” that should be implemented for animal sepsis models. In order to encourage its wide dissemination, this article is freely accessible in Shock, Infection and Intensive Care Medicine Experimental
    corecore