292 research outputs found

    Phase Diagram and Thermodynamic and Dynamic Anomalies in a Pure Repulsive Model

    Get PDF
    Using Monte Carlo simulations a lattice gas model with only repulsive interactions was checked for the presence of anomalies. We show that this system exhibits the density (temperature of maximum density - TMD) and diffusion anomalies as present in liquid water. These anomalous behavior exist in the region of the chemical potential vs temperature phase diagram where two structured phases are present. A fragile-to-strong dynamic transition is also observed in the vicinity of the TMD line

    Quantum density anomaly in optically trapped ultracold gases

    Get PDF
    We show that the Bose-Hubbard Model exhibits an increase in density with temperature at fixed pressure in the regular fluid regime and in the superfluid phase. The anomaly at the Bose-Einstein condensate is the first density anomaly observed in a quantum state. We propose that the mechanism underlying both the normal phase and the superfluid phase anomalies is related to zero point entropies and ground state phase transitions. A connection with the typical experimental scales and setups is also addressed. This key finding opens a new pathway for theoretical and experimental studies of water-like anomalies in the area of ultracold quantum gases

    Diffusion anomaly and dynamic transitions in the Bell-Lavis water model

    Full text link
    In this paper we investigate the dynamic properties of the minimal Bell-Lavis (BL) water model and their relation to the thermodynamic anomalies. The Bell-Lavis model is defined on a triangular lattice in which water molecules are represented by particles with three symmetric bonding arms interacting through van der Waals and hydrogen bonds. We have studied the model diffusivity in different regions of the phase diagram through Monte Carlo simulations. Our results show that the model displays a region of anomalous diffusion which lies inside the region of anomalous density, englobed by the line of temperatures of maximum density (TMD). Further, we have found that the diffusivity undergoes a dynamic transition which may be classified as fragile-to-strong transition at the critical line only at low pressures. At higher densities, no dynamic transition is seen on crossing the critical line. Thus evidence from this study is that relation of dynamic transitions to criticality may be discarded
    • …
    corecore