6 research outputs found

    Rhodiola rosea L.:from golden root to green cell factories

    Get PDF

    Plant In Vitro Systems as a Sustainable Source of Active Ingredients for Cosmeceutical Application

    No full text
    Cosmeceuticals are hybrids between cosmetics and pharmaceuticals which are being designed for a dual purpose: (1) To provide desired esthetical effects and (2) simultaneously treat dermatological conditions. The increased demand for natural remedies and the trends to use natural and safe ingredients resulted in intensive cultivation of medicinal plants. However, in many cases the whole process of plant cultivation, complex extraction procedure, and purification of the targeted molecules are not economically feasible. Therefore, the desired production of natural cosmetic products in sustainable and controllable fashion in the last years led to the intensive utilization of plant cell culture technology. The present review aims to highlight examples of biosynthesis of active ingredients derived through plant in vitro systems with potential cosmeceutical application. The exploitation of different type of extracts used in a possible cosmeceutical formulation, as well as, their activity tested in in vitro/in vivo models is thoroughly discussed. Furthermore, opportunities to manipulate the biosynthetic pathway, hence engineering the biosynthesis of some secondary metabolites, such as anthocyanins, have been highlighted

    Biotechnologically-Produced Myconoside and Calceolarioside E Induce Nrf2 Expression in Neutrophils

    No full text
    The pathological manifestation of various diseases can be suppressed by the activation of nuclear factor erythroid 2 p45-related factor 2 (Nrf2), a transcriptional regulator of the cellular redox balance. Haberlea rhodopensis Friv. is a resurrection plant species endemic for Bulgaria, containing biologically active phenylethanoid glycosides that might possess antioxidant or redox activity. This study aimed to analyze the metabolic profile of in vitro cultured H. rhodopensis and to identify molecules that increase Nrf2 expression in bone marrow neutrophils. Fractions B, D, and E containing myconoside, or myconoside and calceolarioside E in ratios 1:0.6 and 0.25:1 were found to be the most active ones. Fraction B (200 µg/mL) improved neutrophil survival and strongly increased the Nrf2 intracellular level, while D and E, as well as, myconoside and calceolarioside E at the same ratios had a superior effect. Calceolarioside E (32 µg/mL) had stronger activity than myconoside, the effect of which was very similar to that of 2-cyano-3,12-dioxo-oleana-1,9(11)-dien-28-oic acid methyl ester (CDDO-Me), used as a positive control. These data indicate that both molecules, used alone or in combination have stimulatory activity on the endogenous Nrf2 level, indicating their therapeutic potential to regulate the cellular redox homeostasis oxidative stress-associated pathologies

    Biotechnologically-Produced Myconoside and Calceolarioside E Induce Nrf2 Expression in Neutrophils

    No full text
    The pathological manifestation of various diseases can be suppressed by the activation of nuclear factor erythroid 2 p45-related factor 2 (Nrf2), a transcriptional regulator of the cellular redox balance. Haberlea rhodopensis Friv. is a resurrection plant species endemic for Bulgaria, containing biologically active phenylethanoid glycosides that might possess antioxidant or redox activity. This study aimed to analyze the metabolic profile of in vitro cultured H. rhodopensis and to identify molecules that increase Nrf2 expression in bone marrow neutrophils. Fractions B, D, and E containing myconoside, or myconoside and calceolarioside E in ratios 1:0.6 and 0.25:1 were found to be the most active ones. Fraction B (200 μg/mL) improved neutrophil survival and strongly increased the Nrf2 intracellular level, while D and E, as well as, myconoside and calceolarioside E at the same ratios had a superior effect. Calceolarioside E (32 μg/mL) had stronger activity than myconoside, the effect of which was very similar to that of 2-cyano-3,12-dioxo-oleana-1,9(11)-dien-28-oic acid methyl ester (CDDO-Me), used as a positive control. These data indicate that both molecules, used alone or in combination have stimulatory activity on the endogenous Nrf2 level, indicating their therapeutic potential to regulate the cellular redox homeostasis oxidative stress-associated pathologies
    corecore