5,398 research outputs found
Spontaneous patterns in coherently driven polariton microcavities
We consider a polariton microcavity resonantly driven by two external lasers
which simultaneously pump both lower and upper polariton branches at normal
incidence. In this setup, we study the occurrence of instabilities of the
pump-only solutions towards the spontaneous formation of patterns. Their
appearance is a consequence of the spontaneous symmetry breaking of
translational and rotational invariance due to interaction induced parametric
scattering. We observe the evolution between diverse patterns which can be
classified as single-pump, where parametric scattering occurs at the same
energy as one of the pumps, and as two-pump, where scattering occurs at a
different energy. For two-pump instabilities, stripe and chequerboard patterns
become the dominant steady-state solutions because cubic parametric scattering
processes are forbidden. This contrasts with the single-pump case, where
hexagonal patterns are the most common arrangements. We study the possibility
of controlling the evolution between different patterns. Our results are
obtained within a linear stability analysis and are confirmed by finite size
full numerical calculations.Comment: 15 pages, 9 figure
Plasticity in current-driven vortex lattices
We present a theoretical analysis of recent experiments on current-driven
vortex dynamics in the Corbino disk geometry. This geometry introduces
controlled spatial gradients in the driving force and allows the study of the
onset of plasticity and tearing in clean vortex lattices. We describe plastic
slip in terms of the stress-driven unbinding of dislocation pairs, which in
turn contribute to the relaxation of the shear, yielding a nonlinear response.
The steady state density of free dislocations induced by the applied stress is
calculated as a function of the applied current and temperature. A criterion
for the onset of plasticity at a radial location in the disk yields a
temperature-dependent critical current that is in qualitative agreement with
experiments.Comment: 11 pages, 4 figure
Predictive biomarkers for checkpoint inhibitor-based immunotherapy: The Galectin-3 signature in NSCLCs
Checkpoint inhibitor-based immunotherapy is opening a promising scenario in oncology, with objective responses registered in multiple cancer types. However, reliable predictive markers of tumor responsiveness are still lacking. These markers need to be urgently identified for a better selection of patients that can be candidates for immunotherapy. In this pilot study, a cohort of 34 consecutive patients bearing programmed death-ligand 1 (PD-L1)-positive non-small cell lung carcinoma (NSCLC), treated with pembrolizumab, was considered. The retrospective immuno-phenotypic analysis performed on the original tumor biopsies allowed for the identification of a specific “galectin signature”, which strongly correlated with tumor responsiveness to anti PD-1 immunotherapy. We observed that the large majority of patients (about 90%) with high galectin-3 tumor expression (score 3+) showed an early and dramatic progression of the disease after three cycles of treatments. In contrast, all patients with negative or low/intermediate expression of galectin-3 in tumor cells showed an early and durable objective response to pembrolizumab, indicating galectin-3 as an interesting predictive marker of tumor responsiveness. The galectin-3 signature, at least in NSCLCs, promises a better selection of patient candidates for immunotherapy, reducing unnecessary treatment exposures and social costs. A large multicenter study is ongoing to validate this finding
Electron corrected Lorentz forces in solids and molecules in magnetic field
We describe the effective Lorentz forces on the ions of a generic insulating
system in an magnetic field, in the context of Born-Oppenheimer ab-initio
molecular dynamics. The force on each ion includes an important contribution of
electronic origin, which depends explicitly on the velocity of all other ions.
It is formulated in terms of a Berry curvature, in a form directly suitable for
future first principles classical dynamics simulations based {\it e.g.,} on
density functional methods. As a preliminary analytical demonstration we
present the dynamics of an H molecule in a field of intermediate strength,
approximately describing the electrons through Slater's variational
wavefunction.Comment: 5 pages, 2 figures; to appear in Phys. Rev.
Biomarkers of aging in HIV: inflammation and the microbiome
Purpose: HIV-infected subjects present increased levels of inflammatory cytokines and T cell activation in the peripheral blood despite suppressive combination antiretroviral therapy which renders them susceptible to premature aging. The purpose of the present work was to review existing evidence on the ways in which the anatomical and microbiological abnormalities of the gastrointestinal tract can represent a major cause of organ disease in HIV infection. Methods: We conducted a systematic review of the Pubmed database for articles published from 2014 to 2018. We included studies on inflammatory/activation biomarkers associated with cardiovascular and bone disease, neurocognitive impairment and serious non-AIDS events in HIV-infected subjects. We also included researches which linked peripheral inflammation/activation to the anatomical, immune and microbiological alterations of the gastrointestinal tract. Results: Recent literature data confirm the association between non-infectious comorbidities and inflammation in HIV infection which may be driven by gastrointestinal tract abnormalities, specifically microbial translocation and dysbiosis. Furthermore, there is mounting evidence on the possible role of metabolic functions of the microbiota in the pathogenesis of premature aging in the HIV-infected population. Conclusions: Biomarkers need to be validated for their use in the management of HIV infection. Compounds which counteract microbial translocation, inflammation and dysbiosis have been investigated as alternative therapeutic strategies in viro-suppressed HIV-infected individuals, but appear to have limited efficacy, probably due to the multifactorial pathogenesis of non-infectious comorbidities in this setting
Models of plastic depinning of driven disordered systems
Two classes of models of driven disordered systems that exhibit
history-dependent dynamics are discussed. The first class incorporates local
inertia in the dynamics via nonmonotonic stress transfer between adjacent
degrees of freedom. The second class allows for proliferation of topological
defects due to the interplay of strong disorder and drive. In mean field theory
both models exhibit a tricritical point as a function of disorder strength. At
weak disorder depinning is continuous and the sliding state is unique. At
strong disorder depinning is discontinuous and hysteretic.Comment: 3 figures, invited talk at StatPhys 2
Translational Correlations in the Vortex Array at the Surface of a Type-II Superconductor
We discuss the statistical mechanics of magnetic flux lines in a
finite-thickness slab of type-II superconductor. The long wavelength properties
of a flux-line liquid in a slab geometry are described by a hydrodynamic free
energy that incorporates the boundary conditions on the flux lines at the
sample's surface as a surface contribution to the free energy. Bulk and surface
weak disorder are modeled via Gaussian impurity potentials. This free energy is
used to evaluate the two-dimensional structure factor of the flux-line tips at
the sample surface. We find that surface interaction always dominates in
determining the decay of translational correlations in the asymptotic
long-wavelength limit. On the other hand, such large length scales have not
been probed by the decoration experiments. Our results indicate that the
translational correlations extracted from the analysis of the Bitter patterns
are indeed representative of behavior of flux lines in the bulk.Comment: 23 pages, 1 figure (not included), harvmac.tex macro needed (e-mail
requests to [email protected] SU-CM-92-01
Kinetic Theory of Flux Line Hydrodynamics:LIQUID Phase with Disorder
We study the Langevin dynamics of flux lines of high--T superconductors
in the presence of random quenched pinning. The hydrodynamic theory for the
densities is derived by starting with the microscopic model for the flux-line
liquid. The dynamic functional is expressed as an expansion in the dynamic
order parameter and the corresponding response field. We treat the model within
the Gaussian approximation and calculate the dynamic structure function in the
presence of pinning disorder. The disorder leads to an additive static peak
proportional to the disorder strength. On length scales larger than the line
static transverse wandering length and at long times, we recover the
hydrodynamic results of simple frictional diffusion, with interactions
additively renormalizing the relaxational rate. On shorter length and time
scales line internal degrees of freedom significantly modify the dynamics by
generating wavevector-dependent corrections to the density relaxation rate.Comment: 61 pages and 6 figures available upon request, plain TEX using
Harvard macro
- …