4 research outputs found

    Is disturbed clearance of apoptotic keratinocytes responsible for UVB-induced inflammatory skin lesions in systemic lupus erythematosus?

    Get PDF
    Apoptotic cells are thought to play an essential role in the pathogenesis of systemic lupus erythematosus (SLE). We hypothesise that delayed or altered clearance of apoptotic cells after UV irradiation will lead to inflammation in the skin of SLE patients. Fifteen SLE patients and 13 controls were irradiated with two minimal erythemal doses (MEDs) of ultraviolet B light (UVB). Subsequently, skin biopsies were analysed (immuno)histologically, over 10 days, for numbers of apoptotic cells, T cells, macrophages, and deposition of immunoglobulin and complement. Additionally, to compare results with cutaneous lesions of SLE patients, 20 biopsies of lupus erythematosus (LE) skin lesions were analysed morphologically for apoptotic cells and infiltrate. Clearance rate of apoptotic cells after irradiation did not differ between patients and controls. Influx of macrophages in dermal and epidermal layers was significantly increased in patients compared with controls. Five out of 15 patients developed a dermal infiltrate that was associated with increased epidermal influx of T cells and macrophages but not with numbers of apoptotic cells or epidermal deposition of immunoglobulins. Macrophages were ingesting multiple apoptotic bodies. Inflammatory lesions in these patients were localised near accumulations of apoptotic keratinocytes similar as was seen in the majority of LE skin lesions. In vivo clearance rate of apoptotic cells is comparable between SLE patients and controls. However, the presence of inflammatory lesions in the vicinity of apoptotic cells, as observed both in UVB-induced and in LE skin lesions in SLE patients, suggests that these lesions result from an inflammatory clearance of apoptotic cells

    Enhanced diagnostic immunofluorescence using biopsies transported in saline

    Get PDF
    BACKGROUND: The demonstration of tissue-bound immunoreactants by direct immunofluorescence microscopy (DIF) is a valuable parameter in the diagnosis of various autoimmune and immunecomplex-mediated skin diseases. For preservation of tissue-bound immunoreactants, biopsies are usually fresh-frozen in liquid nitrogen or transported in Michel's fixative. But even optimally preserved tissue specimens are no guarantee for the correct diagnosis by DIF, especially when weak to moderate IgG fluorescence of the epidermal basement membrane zone is involved. In such cases false negative results are easily obtained due to the relatively high dermal "background" fluorescence produced by polyclonal anti-human IgG fluorescein conjugates. METHODS: In the present study we have compared the use of normal saline (0.9% NaCl) with liquid nitrogen and Michel's fixative as transport medium for skin biopsies. From 25 patients with an autoimmune skin disease (pemphigus, pemphigoid, lupus erythematosus and vasculitis) four matched skin biopsies were obtained and transported in either saline for 24 and 48 hours, liquid nitrogen, or Michel's fixative for 48 hours. RESULTS: Direct IF microscopy showed significant reduction of background fluorescence (p < 0.01) and relatively enhanced desired specific (IgG, IgA) staining in biopsies transported in saline. A conclusive or tentative IF diagnosis was reached in 92% after 24 h saline, 83% after 48 h saline, 68% after freezing in liquid nitrogen, and 62% after 48 h Michel's medium (n = 25). CONCLUSIONS: We conclude that transporting biopsies without freezing in normal saline for 24 hours is an adequate and attractive method for routine IF diagnosis in autoimmune and immune complex-mediated dermatoses. The superior results with saline incubation are explained by washing away of IgG background in dermis and epidermis
    corecore