95 research outputs found

    El bovino como portador de <i>Escherichia coli</i> enterohemorrágica : Un complejo problema sanitario

    Get PDF
    Escherichia coli verocito-toxigénica (VTEC) produce en el hombre, y en especial en la población infantil, colitis hemorrágica y síndrome urémico hemolítico. Lamentablemente la Argentina presenta la mayor tasa de incidencia a nivel mundial (300-400 casos/año). En este trabajo se establece el rol del bovino como reservorio del agente causal y a través del análisis feno y genotípico de las cepas aisladas de animales jóvenes y adultos, con y sin diarrea, criados en pradera y en feedlot, de reses en matadero y de los alimentos cárneos derivados, se define parte de la cadena epidemiológica por la que esas bacterias llegan al hombre.Trabajo galardonado con el Premio "Vilfrid Barón", versión 2001.Academia Nacional de Agronomía y Veterinaria (ANAV

    El bovino como portador de <i>Escherichia coli</i> enterohemorrágica : Un complejo problema sanitario

    Get PDF
    Escherichia coli verocito-toxigénica (VTEC) produce en el hombre, y en especial en la población infantil, colitis hemorrágica y síndrome urémico hemolítico. Lamentablemente la Argentina presenta la mayor tasa de incidencia a nivel mundial (300-400 casos/año). En este trabajo se establece el rol del bovino como reservorio del agente causal y a través del análisis feno y genotípico de las cepas aisladas de animales jóvenes y adultos, con y sin diarrea, criados en pradera y en feedlot, de reses en matadero y de los alimentos cárneos derivados, se define parte de la cadena epidemiológica por la que esas bacterias llegan al hombre.Trabajo galardonado con el Premio "Vilfrid Barón", versión 2001.Academia Nacional de Agronomía y Veterinaria (ANAV

    Survival in acidic and alcoholic medium of Shiga toxin-producing Escherichia coli O157:H7 and non-O157:H7 isolated in Argentina

    Get PDF
    BACKGROUND: In spite of Argentina having one of the highest frequencies of haemolytic uraemic syndrome (HUS), the incidence of Escherichia coli O157:H7 is low in comparison to rates registered in the US. Isolation of several non-O157 shiga toxin-producing Escherichia coli (STEC) strains from cattle and foods suggests that E. coli O157:H7 is an uncommon serotype in Argentina. The present study was undertaken to compare the survival rates of selected non-O157 STEC strains under acidic and alcoholic stress conditions, using an E. coli O157:H7 strain as reference. RESULTS: Growth at 37°C of E. coli O26:H11, O88:H21, O91:H21, O111:H(-), O113:H21, O116:H21, O117:H7, O157:H7, O171:H2 and OX3:H21, was found to occur at pH higher than 4.0. When the strains were challenged to acid tolerance at pH as low as 2.5, viability extended beyond 8 h, but none of the bacteria, except E. coli O91:H21, could survive longer than 24 h, the autochthonous E. coli O91:H21 being the more resistant serotype. No survival was found after 24 h in Luria Bertani broth supplemented with 12% ethanol, but all these serotypes were shown to be very resistant to 6% ethanol. E. coli O91:H21 showed the highest resistance among serotypes tested. CONCLUSIONS: This information is relevant in food industry, which strongly relies on the acid or alcoholic conditions to inactivate pathogens. This study revealed that stress resistance of some STEC serotypes isolated in Argentina is higher than that for E. coli O157:H7

    Comprehensive evaluation and implementation of improvement actions in butcher shops

    Get PDF
    Foodborne pathogens can cause acute and chronic diseases and produce a wide range of symptoms. Since the consumption of ground beef is a risk factor for infections with some bacterial pathogens, we performed a comprehensive evaluation of butcher shops, implemented improvement actions for both butcher shops and consumers, and verified the impact of those actions implemented. A comprehensive evaluation was made and risk was quantified on a 1-100 scale as high-risk (1-40), moderate-risk (41-70) or low-risk (71-100). A total of 172 raw ground beef and 672 environmental samples were collected from 86 butcher shops during the evaluation (2010-2011) and verification (2013) stages of the study. Ground beef samples were analyzed for mesophilic aerobic organisms, Escherichia coli and coagulase-positive Staphylococcus aureus enumeration. Salmonella spp., E. coli O157:H7, non-O157 Shiga toxin-producing E. coli (STEC), and Listeria monocytogenes were detected and isolated from all samples. Risk quantification resulted in 43 (50.0%) high-risk, 34 (39.5%) moderate-risk, and nine (10.5%) low-risk butcher shops. Training sessions for 498 handlers and 4,506 consumers were held. Re-evaluation by risk quantification and microbiological analyses resulted in 19 (22.1%) high-risk, 42 (48.8%) moderate-risk and 25 (29.1%) low-risk butcher shops. The count of indicator microorganisms decreased with respect to the 2010-2011 period. After the implementation of improvement actions, the presence of L. monocytogenes, E. coli O157:H7 and stx genes in ground beef decreased. Salmonella spp. was isolated from 10 (11.6%) ground beef samples, without detecting statistically significant differences between both study periods (evaluation and verification). The percentage of pathogens in environmental samples was reduced in the verification period (Salmonella spp., 1.5%; L. monocytogenes, 10.7%; E. coli O157:H7, 0.6%; non-O157 STEC, 6.8%). Risk quantification was useful to identify those relevant facts in butcher shops. The reduction of contamination in ground beef and the environment was possible after training handlers based on the problems identified in their own butcher shops. Our results confirm the feasibility of implementing a comprehensive risk management program in butcher shops, and the importance of information campaigns targeting consumers. Further collaborative efforts would be necessary to improve foodstuffs safety at retail level and at home.Facultad de Ciencias VeterinariasInstituto de Genética Veterinari

    First isolation of the enterohaemorrhagic Escherichia coli O145:H- from cattle in feedlot in Argentina

    Get PDF
    BACKGROUND: Enterohaemorrhagic Escherichia coli (EHEC) is considered to be common cause of haemorrhagic colitis (HC), thrombotic thrombocytopenic purpura and haemolytic uraemic syndrome (HUS) in humans. In a previous paper, we have demonstrated that EHEC are commonly found in the intestines of livestock. Infections in humans are, in part, a consequence of consumption of undercooked meat or raw milk. Argentina has one of the highest records of HUS (300–400 cases/year; 22/100,000 children under 4 years of age). The aim of this work is to communicate the first isolation of O145:H-from cattle in this country and characterize the virulence cassette, providing useful information to evaluate the risk of foodborne transmission of this emergent non-O157:H7 serotype. RESULTS: EHEC O145:H- was isolated from cattle in an Argentinian feedlot. Pheno- and genotype of nine strains were characterized, corresponding to several virulence cassettes: VT2(+)eaeA(+) Mp(+) (n = 5), VT2(+)eaeA(+) (n = 1), VT1(+)eaeA(+) Mp(+) (n = 2), and VT1(+)eaeA(+) (n = 1). Strains isolated from the same animal were considered only when they showed a different virulence pattern. The clonal relationship was studied by RAPD. Strains were distributed in two RAPD profiles, which corresponded to the presence of either, VT1(+) or VT2(+) genotype. No difference was detected by RAPD analysis between Mp(+) or Mp(-) strains. CONCLUSIONS: This was the first isolation of EHEC O145:H- serotype in Argentina enlarging the list of non-O157:H7 serotypes isolated from cattle in this country by us. All O145:H-strains carried several virulence factors which allow us to predict their potential ability to develop haemolytic uraemic syndrome in humans

    Virulence genes and intimin types of Shiga-toxin-producing Escherichia coli isolated from cattle and beef products in Argentina

    Get PDF
    A total of 153 Shiga-toxin-producing Escherichia coli (STEC) isolates from feces of cattle and beef products (hamburgers and ground beef) in Argentina were characterized in this study. PCR showed that 22 (14%) isolates carried stx1 genes, 113 (74%) possessed stx2 genes and 18 (12%) both stx1 and stx2. Intimin (eae), enterohemolysin (ehxA), and STEC autoagglutinating adhesin (saa) virulence genes were detected in 36 (24%), 70 (46%) and in 34 (22%) of the isolates, respectively. None of 34 saa-positive isolates carried the gene eae, and 31 were ehxA-positive. Fourteen (7 of serotype O26:H11 and 4 of serotype O5:H-) isolates had intimin β1, 16 isolates possessed intimin γ1 (11 of serotype O145:Hand 5 of serotype O157:H7), 5 isolates had intimin type ε1 (4 of serotypes O103:Hand O103:H2), and one isolate O111:H- showed intimin type θ/γ2. Although the 153 STEC isolates belonged to 63 different seropathotypes, only 12 accounted for 58% of isolates. Seropathotype ONT:H- stx2 (18 isolates) was the most common, followed by O171:H2 stx2 (12 isolates), etc. The majority (84%) of STEC isolates belonged to serotypes previously found in human STEC and 56% to serotypes associated with STEC isolated from patients with hemolytic uremic syndrome (HUS). Thus, this study confirms that cattle are a major reservoir of STEC pathogenic for humans. To our knowledge, this is the first study that described the presence of saa gene in STEC of serotypes O20:H19, O39:H49, O74:H28, O79:H19, O116:H21, O120:H19, O141:H7, O141:H8, O174:H21, and ONT:H21. The serotypes O120:H19 and O185:H7 were not previously reported in bovine STEC. [Int Microbiol 2004; 7(4):269-276

    Comprehensive evaluation and implementation of improvement actions in butcher shops

    Get PDF
    Foodborne pathogens can cause acute and chronic diseases and produce a wide range of symptoms. Since the consumption of ground beef is a risk factor for infections with some bacterial pathogens, we performed a comprehensive evaluation of butcher shops, implemented improvement actions for both butcher shops and consumers, and verified the impact of those actions implemented. A comprehensive evaluation was made and risk was quantified on a 1-100 scale as high-risk (1-40), moderate-risk (41-70) or low-risk (71-100). A total of 172 raw ground beef and 672 environmental samples were collected from 86 butcher shops during the evaluation (2010-2011) and verification (2013) stages of the study. Ground beef samples were analyzed for mesophilic aerobic organisms, Escherichia coli and coagulase-positive Staphylococcus aureus enumeration. Salmonella spp., E. coli O157:H7, non-O157 Shiga toxin-producing E. coli (STEC), and Listeria monocytogenes were detected and isolated from all samples. Risk quantification resulted in 43 (50.0%) high-risk, 34 (39.5%) moderate-risk, and nine (10.5%) low-risk butcher shops. Training sessions for 498 handlers and 4,506 consumers were held. Re-evaluation by risk quantification and microbiological analyses resulted in 19 (22.1%) high-risk, 42 (48.8%) moderate-risk and 25 (29.1%) low-risk butcher shops. The count of indicator microorganisms decreased with respect to the 2010-2011 period. After the implementation of improvement actions, the presence of L. monocytogenes, E. coli O157:H7 and stx genes in ground beef decreased. Salmonella spp. was isolated from 10 (11.6%) ground beef samples, without detecting statistically significant differences between both study periods (evaluation and verification). The percentage of pathogens in environmental samples was reduced in the verification period (Salmonella spp., 1.5%; L. monocytogenes, 10.7%; E. coli O157:H7, 0.6%; non-O157 STEC, 6.8%). Risk quantification was useful to identify those relevant facts in butcher shops. The reduction of contamination in ground beef and the environment was possible after training handlers based on the problems identified in their own butcher shops. Our results confirm the feasibility of implementing a comprehensive risk management program in butcher shops, and the importance of information campaigns targeting consumers. Further collaborative efforts would be necessary to improve foodstuffs safety at retail level and at home.Facultad de Ciencias VeterinariasInstituto de Genética Veterinari

    Isolation and characterization of non-O157 Shiga toxin-producing <i>Escherichia coli</i> from beef carcasses, cuts and trimmings of abattoirs in Argentina

    Get PDF
    Several foods contaminated with Shiga toxin-producing Escherichia coli (STEC) are associated with human diseases. Some countries have established microbiological criteria for non-O157 STEC, thus, the absence of serogroups O26, O45, O103, O104, O111, O121, and O145 in sprouts from the European Union or ground beef and beef trimmings from the United States is mandatory. While in Argentina screening for O26, O103, O111, O145 and O121 in ground beef, ready-to-eat food, sausages and vegetables is mandatory, other countries have zero-tolerance for all STEC in chilled beef. The aim of this study was to provide data on the prevalence of non-O157 STEC isolated from beef processed in eight Argentinean cattle slaughterhouses producing beef for export and local markets, and to know the non-O157 STEC profiles through strain characterization and genotypic analysis. Samples (n = 15,965) from 3,205 beef carcasses, 9,570 cuts and 3,190 trimmings collected between March and September 2014 were processed in pools of five samples each. Pools of samples (n = 3,193) from 641 carcasses, 1,914 cuts and 638 trimming were analyzed for non-O157 STEC isolation according to ISO/CEN 13136:2012. Of these, 37 pools of carcasses (5.8%), 111 pools of cuts (5.8%) and 45 pools of trimmings (7.0%) were positive for non-O157 STEC. STEC strains (n = 200) were isolated from 193 pools of samples. The most prevalent serotypes were O174:H21, O185:H7, O8:H19, O178:H19 and O130:H11, and the most prevalent genotypes were stx2c(vh-b) and stx2a/saa/ehxA. O103:H21 strain was eae-positive and one O178:H19 strain was aggR/aaiC-positive. The prevalence of non-O157 STEC in beef carcasses reported here was low. None of the non-O157 STEC strains isolated corresponded to the non-O157 STEC serotypes and virulence profiles isolated from human cases in Argentina in the same study period. The application of microbiological criteria for each foodstuff should be determined by risk analysis in order to have a stringent monitoring system. Likewise, zero-tolerance intervention measures should be applied in beef, together with GMP and HACCP. Further, collaborative efforts for risk assessment, management and communication are extremely important to improve the safety of foodstuffs.Instituto de Genética VeterinariaFacultad de Ciencias Veterinaria

    Isolation and characterization of non-O157 Shiga toxin-producing <i>Escherichia coli</i> from beef carcasses, cuts and trimmings of abattoirs in Argentina

    Get PDF
    Several foods contaminated with Shiga toxin-producing Escherichia coli (STEC) are associated with human diseases. Some countries have established microbiological criteria for non-O157 STEC, thus, the absence of serogroups O26, O45, O103, O104, O111, O121, and O145 in sprouts from the European Union or ground beef and beef trimmings from the United States is mandatory. While in Argentina screening for O26, O103, O111, O145 and O121 in ground beef, ready-to-eat food, sausages and vegetables is mandatory, other countries have zero-tolerance for all STEC in chilled beef. The aim of this study was to provide data on the prevalence of non-O157 STEC isolated from beef processed in eight Argentinean cattle slaughterhouses producing beef for export and local markets, and to know the non-O157 STEC profiles through strain characterization and genotypic analysis. Samples (n = 15,965) from 3,205 beef carcasses, 9,570 cuts and 3,190 trimmings collected between March and September 2014 were processed in pools of five samples each. Pools of samples (n = 3,193) from 641 carcasses, 1,914 cuts and 638 trimming were analyzed for non-O157 STEC isolation according to ISO/CEN 13136:2012. Of these, 37 pools of carcasses (5.8%), 111 pools of cuts (5.8%) and 45 pools of trimmings (7.0%) were positive for non-O157 STEC. STEC strains (n = 200) were isolated from 193 pools of samples. The most prevalent serotypes were O174:H21, O185:H7, O8:H19, O178:H19 and O130:H11, and the most prevalent genotypes were stx2c(vh-b) and stx2a/saa/ehxA. O103:H21 strain was eae-positive and one O178:H19 strain was aggR/aaiC-positive. The prevalence of non-O157 STEC in beef carcasses reported here was low. None of the non-O157 STEC strains isolated corresponded to the non-O157 STEC serotypes and virulence profiles isolated from human cases in Argentina in the same study period. The application of microbiological criteria for each foodstuff should be determined by risk analysis in order to have a stringent monitoring system. Likewise, zero-tolerance intervention measures should be applied in beef, together with GMP and HACCP. Further, collaborative efforts for risk assessment, management and communication are extremely important to improve the safety of foodstuffs.Instituto de Genética VeterinariaFacultad de Ciencias Veterinaria

    Shiga toxin-producing <i>Escherichia coli</i> in beef retail markets from Argentina

    Get PDF
    Shiga toxin-producing Escherichia coli (STEC) are foodborne pathogens that cause mild or serious diseases and can lead to people death. This study reports the prevalence and characteristics of STEC O157 and non-O157 in commercial ground beef and environmental samples, including meat table, knife, meat mincing machine, and manipulator hands (n = 450) obtained from 90 retail markets over a nine-month period. The STEC isolates were serotyped and virulence genes as stx (Shiga toxin), rfbO157] (O157 lipopolysaccharide), fliCH7 (H7 flagellin), eae (intimin), ehxA (enterohemolysin) and saa (STEC autoagglutinating adhesin), were determined. STEC O157 were identified in 23 (25.5%) beef samples and 16 (4.4%) environmental samples, while STEC non-O157 were present in 47 (52.2%) and 182 (50.5%), respectively. Among 54 strains isolated, 17 were STEC O157:H7 and 37 were STEC non-O157. The prevalent genotype for O157 was stx2/eae/ehxA/fliCH7 (83.4%), and for STEC non-O157 the most frequent ones were stx1/stx2/saa/ehxA (29.7%); stx2 (29.7%); and stx2/saa/ehxA (27%). None of the STEC non-O157 strains were eae-positive. Besides O157:H7, other 20 different serotypes were identified, being O8:H19, O178:H19, and O174:H28 the prevalent. Strains belonging to the same serotype could be isolated from different sources of the same retail market. Also, the same serotype could be detected in different stores. In conclusion, screening techniques are increasingly sensitive, but the isolation of STEC non-O157 is still a challenge. Moreover, with the results obtained from the present work, although more studies are needed, cross-contamination between meat and the environment could be suspected.Instituto de Genética Veterinari
    corecore